第3课 : 关于离散随机变量的更多信息
Probability generating functions (pgf, 概率生成函数)
假设X是一个离散型随机变量,只取非负整数值。X的概率生成函数(pgf)为:
注:G() 是X的概率质量函数(概率分布函数)G(
)=
泊松分布的概率生成函数:
泊松分布概率生成函数 pgf :
概率生成函数的重要性质:
1: 独立随机变量之和的概率生成函数pgf 等于 各个独立随机变量概率生成函数pgf 的 乘积 。(因分解特性factorization property)
重要性质的相关例子:
X (参数为) 和 W(参数为
)是相互独立的泊松分布随机变量 Y = X+Y ,求Y的概率生成函数
从概率生成函数pgf 恢复 概率质量函数(概率分布函数)
1. 概率生成函数的一般展开式
binomial random variable(二项式随机变量)

二项分布的概率质量函数(概率分布函数)
当n很大、p很小的时候,二项分布可以近似看成以参数=np的泊松分布
二项分布概率生成函数pgf: 
因为我们可以通过概率生成函数恢复概率质量函数(概率分布函数)(使用求导 z=0的方法),所以若两个随机变量的概率生成函数近似的话,可以得出两个随机变量的概率分布也是近似的。
弱大数定理(The weak law of large numbers)WLLN


弱大数定理给出的条件:
弱大数定理不等式:

相关例题:
*条件概率(Conditional probability)
题目翻译:1: 使用光通信系统传输信息i时,光的强度的光射向光电探测器。2:当强度为
的光照射到光电探测器上时,产生的光电子数为泊松(
)随机变量。
求在发送信息 i 的情况下,光电探测器观察到的光电子数小于 2 的条件概率。
求解翻译:让 X 表示要发送的信息,让 Y 表示光电探测器产生的光电子数。 光电探测器产生的光电子数。
条件概率的替代法:
例题:设X和Y是相互独立、离散、 整数值的随机变量 (相当于模拟 输入变量X 和 噪声变量Y)
最大后验概率 (MAP):

*(重点)条件期望 (Conditional expectation)




相关例题①:

题目翻译:放射性样本释放α粒子的速度取决于样本的大小。 对于大小为 k 的样本,假设观测到的粒子数为参数为 k 的泊松随机变量 Y。如果样本大小是一个几何分布(p)随机变量 X。
求 P(Y = 0) 和 P(X=1|Y=0)。
从题目分析: 样本大小X是观测到粒子数Y的条件,产生了一个条件概率的题目。
相关例题②:
题目翻译:在样本大小 X = k 的条件下,放射性样本发射的阿尔法粒子的随机数量 Y 为条件泊松分布(参数为k)求 期望E[Y|X = k]。