上一篇最优性条件与线探索中用到了Hesse矩阵,现在记录一下Hesse矩阵。
一、定义
Hesse矩阵,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。Hesse矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。
1.1二阶导数:一阶导数的变化率
一阶导数 | ||
二阶导数 |
1.2多维函数:偏导数
一阶偏导为向量,称为梯度(gradient)
partial(偏导数)
仍是
的标量函数,
方形矩阵就为Hesse矩阵,即对梯度
再求偏导。
二、性质:
2.1对称性
如果函数在D区域内二阶连续可导,那么
Hesse矩阵
在D内为对称矩阵。
原因:如果函数的二阶偏导数连续,则二阶偏导数的求导顺序没有区别,即
所以具有对称性。
2.2与雅可比矩阵(Jacobian matrix)的关系
向量函数
目标函数梯度
的Jacobian矩阵和目标函数
的Hesse矩阵是等价的。
三、例题
对于二次型函数,Hesse矩阵为常数矩阵与x无关,但一般而言,Hesse矩阵可以是x的函数。
四、应用
在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数。
若一元函数在
点的某个领域内具有任意阶导数,则
在
处的泰勒展开式为:
其中,
。
二元函数在
点处的泰勒展开式为:
其中,,
。
将上述展开式写成矩阵形式,则有:
即:
其中:
是
在
点处的Hesse矩阵。它是由函数
在
点处的二阶偏导数所组成的方阵。