Hesse矩阵

上一篇最优性条件与线探索中用到了Hesse矩阵,现在记录一下Hesse矩阵。


一、定义

Hesse矩阵,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。Hesse矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。

1.1二阶导数:一阶导数的变化率

f(x)=2xf(x)=x^{2}
一阶导数\frac{\mathrm{d} f}{\mathrm{d} x}=2\frac{\mathrm{d} f}{\mathrm{d} x}=2x
二阶导数\frac{\partial^2 f}{\partial x^2}=0\frac{\partial^2 f}{\partial x^2}=2

1.2多维函数:偏导数

一阶偏导为向量,称为梯度(gradient)

\triangledown f(x)=\begin{bmatrix} \frac{\partial f}{\partial x_{1}}\\ \frac{\partial f}{\partial x_{2}}\\ \vdots \\ \frac{\partial f}{\partial x_{3}}\end{bmatrix} 

\partial =partial(偏导数)

\frac{\partial f}{\partial x_{i}}仍是x的标量函数,R^{n}\rightarrow R

\triangledown \left ( \frac{\partial f}{\partial x_{i}} \right )写称\triangledown ^{2}f(x)矩阵形式

H(x)方形矩阵就为Hesse矩阵,即对梯度\triangledown f(x)再求偏导。

二、性质:

2.1对称性

如果函数f在D区域内二阶连续可导,那么fHesse矩阵H(x)在D内为对称矩阵。

原因:如果f函数的二阶偏导数连续,则二阶偏导数的求导顺序没有区别,即

H_{ij}=\frac{\partial }{\partial x_{j}}\frac{\partial f}{\partial x_{i}}=\frac{\partial }{\partial x_{i}}\frac{\partial f}{\partial x_{j}}=H _{ji}

所以H(x)具有对称性。

2.2与雅可比矩阵(Jacobian matrix)的关系

向量函数

g(x)=\begin{bmatrix} g_{1}(x)\\ g_{2}(x)\\ \vdots \\ g_{m}(x)\end{bmatrix}

H(x)=J(\triangledown f)

目标函数f梯度\triangledown f(x)的Jacobian矩阵和目标函数f的Hesse矩阵是等价的。

三、例题

f(x,y)=5x+8y+xy-x^{2}-2y^{2}

\triangledown f(x,y)=\begin{bmatrix} \frac{\partial f}{\partial x}\\ \frac{\partial f}{\partial y} \end{bmatrix}==\begin{bmatrix} 5-2x+y\\ 8+x-4y \end{bmatrix}

\frac{\partial^2 f}{\partial x^2}=\frac{\partial (5-2x+y)}{\partial x}=-2

\frac{\partial }{\partial y}\frac{\partial f}{\partial x}=\frac{\partial (5-2x+y)}{\partial y}=1

\frac{\partial }{\partial x}\frac{\partial f}{\partial y}=\frac{\partial (8+x-4y)}{\partial x}=1

\frac{\partial^2 f}{\partial y^2}=\frac{\partial (8+x-4y)}{\partial y}=-4

H(x)=\begin{bmatrix} -2 &1 \\ 1 & -4 \end{bmatrix}

对于二次型函数,Hesse矩阵为常数矩阵与x无关,但一般而言,Hesse矩阵可以是x的函数。

四、应用

在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数

若一元函数f(x)x=x^{(0)}点的某个领域内具有任意阶导数,则f(x)x^{(0)}处的泰勒展开式为:

其中\Delta x=x-x^{(0)},\Delta x^{2}=\left ( x-x^{(0)} \right )^{2}

二元函数f(x_{1} ,x_{2})X^{(0)}\left ( x_{1}^{(0)} ,x_{2}^{(0)}\right )点处的泰勒展开式为:

其中,\Delta x_{1}=x_{1}-x_{1}^{(0)}\Delta x_{2}^{2}=\left ( x_{2}-x_{2}^{(0)} \right )^{2}

将上述展开式写成矩阵形式,则有:

即:

其中:

G(X^{(0)})f(x_{1} ,x_{2})X^{(0)}点处的Hesse矩阵。它是由函数f(x_{1} ,x_{2})X^{(0)}点处的二阶偏导数所组成的方阵。



 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值