目录
持续更新中...
注意:标题后标星号的为选学内容
1 点火公式
简化计算过程会用到,比如3.1.1.7星形线中的例题
2 定积分的微元法(元素法)
2.1 使用条件
U是所求图形面积
2.2 使用步骤
3 定积分的几何应用
主要就是对微元法的使用
要求:跳过步骤二直接写步骤三
3.1 平面图形的面积
3.1.1 直角坐标系的情形
3.1.1.1 X型
选取x作为积分变量
3.1.1.2 Y型
选x作为积分变量时,上下边界不止一条曲线,较为复杂,此时若选取y作为积分变量好求,择选y作为积分变量
3.1.1.3 双型
既可以视为X型,也可以使用Y型
3.1.1.4 复合:分割型
可以视为两个图形分别运用X型或Y型
关键:找交点定边界
有一些分割点较为含蓄,不如上面的直观:
练习:
3.1.1.5 引入参数型
函数式复杂,计算量都非常大时,可以引入一个公共的变量,用这个变量分别表示x与y
3.1.1.6 模型:摆线
应用:引入参数型
拱数:一拱代表一个三角函数的周期,比如此题,t∈[0, 2π]代表一拱
摆线图形分析:
计算过程:
注意:定积分区间的改变!!
3.1.1.7 模型:星形线
例题:
注意:书本例题中并未给出t的取值范围
3.1.2 极坐标系的情形
3.1.2.1 基本公式
3.1.2.2 练习:双纽线
3.1.2.3 练习:心形线
3.2 立体的体积
3.2.1 旋转体的体积
单侧转时可用的技巧:绕x轴转就求以x为积分变量的图形的面积,然后添π添平方得到体积,如下图:
3.2.1.1 模型:星形线
旋转轴对面是对称的,所以只求一边的面积,再用技巧(添π添平方)
3.2.1.2 模型:摆线
1拱的面积:
绕X轴
直接添π添平方(注意平方的位置,dt前面由dx转化来的部分不加平方)
绕Y轴
方法一:普通作差
方法二:作差结论
方法原型
部分结论:
注意:dx本来就小,平方之后更小,所以忽略
* 总的结论:
注意:当f₁(x) = 0时,即为上方"部分结论"
3.2.2 已知平行截面面积的立体的体积 *
例题:
3.3 平行曲线的弧长
3.3.1 基本公式
以下几种情形都基于该公式
3.3.2 直角坐标方程的情形
3.3.3 参数方程的情形
3.3.4 极坐标方程情形
推导过程:
练习:星形线全长