高等数学(上)题型笔记(六)定积分的应用

目录

1 点火公式

2 定积分的微元法(元素法)

2.1 使用条件

2.2 使用步骤

3 定积分的几何应用

3.1 平面图形的面积

3.1.1 直角坐标系的情形

3.1.1.1 X型 

3.1.1.2 Y型

3.1.1.3 双型

3.1.1.4 复合:分割型

3.1.1.5 引入参数型

3.1.1.6 模型:摆线

3.1.1.7 模型:星形线

3.1.2 极坐标系的情形

3.1.2.1 基本公式

3.1.2.2 练习:双纽线

3.1.2.3 练习:心形线

3.2 立体的体积

3.2.1 旋转体的体积

3.2.1.1 模型:星形线

3.2.1.2 模型:摆线

绕X轴

绕Y轴

方法一:普通作差

方法二:作差结论

方法原型

3.2.2 已知平行截面面积的立体的体积 *

3.3 平行曲线的弧长

3.3.1 基本公式 

3.3.2 直角坐标方程的情形

3.3.3 参数方程的情形

3.3.4 极坐标方程情形


持续更新中...

注意:标题后标星号的为选学内容

1 点火公式

简化计算过程会用到,比如3.1.1.7星形线中的例题


2 定积分的微元法(元素法)

2.1 使用条件

U是所求图形面积


2.2 使用步骤


3 定积分的几何应用

主要就是对微元法的使用

要求:跳过步骤二直接写步骤三


3.1 平面图形的面积

3.1.1 直角坐标系的情形

3.1.1.1 X型 

选取x作为积分变量 


3.1.1.2 Y型

选x作为积分变量时,上下边界不止一条曲线,较为复杂,此时若选取y作为积分变量好求,择选y作为积分变量


3.1.1.3 双型

既可以视为X型,也可以使用Y型


3.1.1.4 复合:分割型

可以视为两个图形分别运用X型或Y型

关键:找交点定边界

有一些分割点较为含蓄,不如上面的直观: 

 

练习:


3.1.1.5 引入参数型

函数式复杂,计算量都非常大时,可以引入一个公共的变量,用这个变量分别表示x与y


3.1.1.6 模型:摆线

应用:引入参数型

拱数:一拱代表一个三角函数的周期,比如此题,t∈[0, 2π]代表一拱

摆线图形分析:

 计算过程:

注意:定积分区间的改变!! 


3.1.1.7 模型:星形线

例题:

 注意:书本例题中并未给出t的取值范围


3.1.2 极坐标系的情形

3.1.2.1 基本公式


3.1.2.2 练习:双纽线


3.1.2.3 练习:心形线

3.2 立体的体积

3.2.1 旋转体的体积

单侧转时可用的技巧:绕x轴转就求以x为积分变量的图形的面积,然后添π添平方得到体积,如下图:


3.2.1.1 模型:星形线

旋转轴对面是对称的,所以只求一边的面积,再用技巧(添π添平方)


3.2.1.2 模型:摆线

1拱的面积:

绕X轴

直接添π添平方(注意平方的位置,dt前面由dx转化来的部分不加平方)

绕Y轴
方法一:普通作差

方法二:作差结论

方法原型

部分结论: 

注意:dx本来就小,平方之后更小,所以忽略

* 总的结论: 

 注意:当f₁(x) = 0时,即为上方"部分结论"


3.2.2 已知平行截面面积的立体的体积 *

例题:


3.3 平行曲线的弧长

3.3.1 基本公式 

以下几种情形都基于该公式 


3.3.2 直角坐标方程的情形


3.3.3 参数方程的情形


3.3.4 极坐标方程情形

推导过程:


练习:星形线全长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值