【高等数学基础进阶】定积分应用

几何应用

平面图形的面积

若平面域 D D D由曲线 y = f ( x ) , y = g ( x ) ( f ( x ) ≥ g ( x ) ) , x = a , x = b ( a < b ) y=f(x),y=g(x)(f(x)\geq g(x)),x=a,x=b(a<b) y=f(x),y=g(x)(f(x)g(x)),x=a,x=b(a<b)所围成,则
S = ∫ a b [ f ( x ) − g ( x ) ] d x S=\int^{b}_{a}[f(x)-g(x)]dx S=ab[f(x)g(x)]dx

化成二重积分
S = ∬ D 1 d σ = ∫ b a d x ∫ g ( x ) f ( x ) d y S=\iint\limits_{D}1d \sigma =\int^{a}_{b}dx \int^{f(x)}_{g(x)}dy S=D1dσ=badxg(x)f(x)dy

若平面域 D D D由曲线 ρ = ρ ( θ ) , θ = α , θ = β ( α < β ) \rho =\rho (\theta ),\theta =\alpha,\theta =\beta(\alpha<\beta) ρ=ρ(θ),θ=α,θ=β(α<β)所围成,则
S = 1 2 ∫ α β ρ 2 ( θ ) d θ S= \frac{1}{2}\int^{\beta}_{\alpha}\rho ^{2}(\theta )d \theta S=21αβρ2(θ)dθ

化成二重积分
S = ∬ D 1 d σ = ∫ α β d θ ∫ 0 ρ ( θ ) ρ d ρ S=\iint\limits_{D}1d \sigma =\int^{\beta}_{\alpha}d \theta \int^{\rho (\theta )}_{0}\rho d \rho S=D1dσ=αβdθ0ρ(θ)ρdρ

旋转体体积

若平面域 D D D由曲线 y = f ( x ) , ( f ( x ) ≥ 0 ) , x = a , x = b ( a < b ) y=f(x),(f(x)\geq0),x=a,x=b(a<b) y=f(x),(f(x)0),x=a,x=b(a<b)所围成,则
区域 D D D x x x轴旋转一周所得到的旋转体积为
V x = π ∫ a b f 2 ( x ) d x V_{x}=\pi \int^{b}_{a}f^{2}(x)dx Vx=πabf2(x)dx

取一小段 d x , ( a < x < b ) dx,(a<x<b) dx,(a<x<b),则这一小段绕 x x x轴旋转的得到圆柱的高为 d x dx dx,半径为 f ( x ) f(x) f(x),因此体积为
d V = π f 2 ( x ) d x dV=\pi f^{2}(x)dx dV=πf2(x)dx
然后积分得到 V x V_{x} Vx

区域 D D D y y y轴旋转一周所得到的旋转体积为
V y = 2 π ∫ a b x f ( x ) d x V_{y}=2 \pi \int^{b}_{a}xf(x)dx Vy=2πabxf(x)dx

取一小段 d x , ( a < x < b ) dx,(a<x<b) dx,(a<x<b),则这一小段绕 y y y轴旋转出来一个圆筒,将该圆筒在任意一处竖直截开,得到一个长方体,该长方体的宽为 d x dx dx,高为 f ( x ) f(x) f(x),长为 2 π x 2\pi x 2πx,因此体积为
d V = 2 π x f ( x ) d x dV=2\pi xf(x)dx dV=2πxf(x)dx
然后积分得到 V y V_{y} Vy

对于任意的区域 D D D a x + b y = c ax+by=c ax+by=c旋转,得到的旋转体体积,可以考虑二重积分,即在 D D D d σ d \sigma dσ,该面积微元绕直线旋转得到一个环状体,该环状体的面积为 d σ d \sigma dσ,长度为 2 π r ( x , y ) 2\pi r(x,y) 2πr(x,y),其中 r ( x , y ) r(x,y) r(x,y)表示该面积微元到直线的距离一般为 r ( x , y ) = ∣ a x + b y − c ∣ a 2 + b 2 \begin{aligned} r(x,y)=\frac{|ax+by-c|}{\sqrt{a^{2}+b^{2}}}\end{aligned} r(x,y)=a2+b2 ax+byc,因此该环状体体积为
V = 2 π r ( x , y ) d σ V=2 \pi r(x,y)d \sigma V=2πr(x,y)dσ
对面积微元做二重积分即可得到整体体积,即
V = 2 π ∬ D r ( x , y ) d σ V=2\pi \iint\limits_{D}r(x,y)d \sigma V=2πDr(x,y)dσ
用该结论推绕 x , y x,y x,y轴旋转的结论
区域 D D D x x x轴旋转一周所得到的旋转体积为
V = 2 π ∬ D y d σ = 2 π ∫ a b d x ∫ 0 f ( x ) y d y = π ∫ a b f 2 ( x ) d x V=2\pi\iint\limits_{D}yd \s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值