关系绘图relplot
relplot函数可以绘制散点图和线形图,==默认散点图==,可以通过修改==kind==参数决定画图类型
- 散点图scatterplot:
relplot(kind='scatter')
。 - 线形图lineplot:
relplot(kind='line')
。
基本使用
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
tips = sns.load_dataset("tips",cache=True)
print(tips.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
sns.relplot(x="total_bill",y="tip",data=tips)
plt.tight_layout()
plt.savefig('1.png')
plt.show()
上述代码中:
tips数据是seaborn库==自带==的数据集,可通过sns.load_dataset('tips',cache=True)
加载
sns.relplot(x="total_bill",y="tip",data=tips)
中的==x="total_bill",y="tip"==是将x轴命名为“total_bill”,y轴命名为"tip"
效果图如下:
添加hue参数
hue
参数是用来控制第三个变量的颜色显示的。比如我们在以上图的基础之上体现出星期几的参数,那么可以通过以下代码来实现:
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
tips = sns.load_dataset("tips",cache=True)
print(tips.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
sns.relplot(x="total_bill",y="tip",hue="day",data=tips)
plt.tight_layout()
plt.savefig('2.png')
plt.show()
效果图如下: 从上图可以看出,hue
参数的作用是,在x,y两个变量不变的情况下,==将数据散点根据heu参数进行分类,并用不同颜色显示散点==
添加col和row参数
col
和row
,可以将图根据某个属性的值的个数分割成多列或者多行。比如在以上图的基础之上我们想要把Lunch(午餐)
和Dinner(晚餐)
分割成两个图来显示,那么可以通过以下代码来实现:
sns.relplot(x="total_bill",y="tip",hue="day",col="time",data=tips)
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
tips = sns.load_dataset("tips",cache=True)
print(tips.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
sns.relplot(x="total_bill",y="tip",hue="day",col='time',data=tips)
plt.tight_layout()
plt.savefig('3.png')
plt.show()
效果图如下:

也可以再在row
上添加一个新的变量,比如把性别按照行显示出来,代码如下:
sns.relplot(x="total_bill",y="tip",hue="day",col="time",row="sex",data=tips)
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
tips = sns.load_dataset("tips",cache=True)
print(tips.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
sns.relplot(x="total_bill",y="tip",hue="day",col='time',row='sex',data=tips)
plt.tight_layout()
plt.savefig('4.png')
plt.show()
效果图如下: 
指定图像具体显示为几列
有时候我们的图有很多,默认情况下会在一行中全部展示出来,那么我们可以通过col_wrap
来指定具体多少列。示例代码如下:
sns.relplot(x="total_bill",y="tip",col="day",col_wrap=2,data=tips)
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
tips = sns.load_dataset("tips",cache=True)
print(tips.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
fig,axes=plt.subplots(1,2) #将整个画布fig分为一行两列两个axes子图
sns.relplot(x="total_bill",y="tip",col="day",data=tips,ax=axes[0])#第一个子图
plt.savefig('5.png')
sns.relplot(x="total_bill",y="tip",col="day",col_wrap=2,data=tips,ax=axes[1])#第二个子图
plt.tight_layout()
plt.savefig('6.png')
plt.show()
不使用
col_wrap与使用
col_wrap的效果图对比:
绘制折线图
relplot
通过设置kind="line"
可以绘制折线图。并且功能比plt.plot
更加强大。plot
只能指定具体的x
和y
轴的数据(比如x轴是N个数,y轴也必须为N个数)。而relplot
则可以在自动在两组数据中进行计算绘图。示例代码如下:
fmri = sns.load_dataset("fmri")
sns.relplot(x="timepoint",y="signal",kind="line",data=fmri)
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
fmri = sns.load_dataset("fmri")
print(fmri.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
sns.relplot(x="timepoint",y="signal",kind="line",data=fmri)
plt.tight_layout()
plt.savefig('7.png')
plt.show()
效果图如下: 
同理,折线图也可以设置hue、col、style
等参数
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
fmri = sns.load_dataset("fmri")
print(fmri.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
# 设置hue为event,就会根据event来绘制不同的颜色
# 设置col为region,就会根据region值的个数来绘制指定个数的图
# 设置style为event,就会根据event来设置线条的样式
sns.relplot(x="timepoint",y="signal",kind="line",hue="event",col="region",style="event",data=fmri)
plt.tight_layout()
plt.savefig('8.png')
plt.show()
效果图如下:
style
参数是用来设置线条样式的
上述代码中style='event'
,将stim以蓝色实线
绘出,cue以黄色虚线
绘出
分类绘图catplot
分类图的绘制,采用的是sns.catplot
来实现的。cat
是category
的简写。默认绘制的是分类散点图
,如果想要绘制其他类型的图,同样也是通过kind
参数来指定。
catplot
不能使用size
和style
参数
分类绘图包括:
- 分类散点图
- 分类分布图
- 分类统计图
分类散点图
适合数据量不是很多的情况,用catplot
来实现,但是也有以下两个特别的方法:
stripplot()
:catplot(kind="strip")
,默认。swarmplot()
:catplot(kind="swarm")
。
stripplot
sns.catplot(x="day",y="total_bill",data=tips,hue="sex")
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
tips = sns.load_dataset("tips")
print(tips.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
sns.catplot(x="day",y="total_bill",data=tips,hue="sex")
plt.tight_layout()
plt.savefig('9.png')
plt.show()
效果图如下:
swarmplot
上图展示的是按照星期几的分类散点图,看起来这些点有点重合,如果想要散开来,那么可以使用catplot(kind="swarm")
。示例代码如下:
sns.catplot(x="day",y="total_bill",kind="swarm",data=tips,hue="sex")
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
tips = sns.load_dataset("tips")
print(tips.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
sns.catplot(x="day",y="total_bill",kind="swarm",data=tips,hue="sex")
plt.tight_layout()
plt.savefig('10.png')
plt.show()
效果图如下:
横向分类散点图(和横着的条形图一样的布局)
要将垂直的分类散点图变成横向的,只需要把x
和y
对应的值进行互换即可。
sns.catplot(y="day",x="total_bill",kind="swarm",data=tips,hue="sex")
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
tips = sns.load_dataset("tips")
print(tips.sample(10)) #从tips数据集里随机抽10行,看看这些数据长什么样子
sns.catplot(y="day",x="total_bill",kind="swarm",data=tips,hue="sex")
plt.tight_layout()
plt.savefig('11.png')
plt.show()
效果图如下:
分类分布图
分类分布图,主要是根据分类,看每个分类下数据的分布情况。也是通过catplot
来实现,以下两个方法分别是不同的kind
参数:
箱线图boxplot()
:catplot(kind="box")
。小提琴图violinplot()
:catplot(kind="violin")
。
箱线图
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
athletes = pd.read_csv("athlete_events.csv")
countries = {
'CHN':'中国',
'JPN':"日本",
'KOR':'韩国',
'USA':"美国",
'CAN':"加拿大",
'BRA':"巴西",
'GBR':"英国",
'FRA':"法国",
'ITA':"意大利",
'ETH':"埃塞俄比亚",
'KEN':"肯尼亚",
'NIG':"尼日利亚",
}
plt.rcParams['font.sans-serif'] = ['FangSong']
# print(plt.rcParams.keys())
need_athletes = athletes[athletes['NOC'].isin(list(countries.keys()))] #Pandas isin()方法用于过滤数据帧。isin() 方法有助于选择在特定列中具有特定(或多个)值的行
g = sns.catplot(x="NOC",y="Height",data=need_athletes,kind="box",hue="Sex")
g.fig.set_size_inches(20,5)
g.set_xticklabels(list(countries.values()))
plt.tight_layout()
plt.savefig('12.png')
plt.show()
athletes[athletes['NOC'].isin(list(countries.keys()))]
:遍历'NOC'这列的数据,判断国籍是否在列表中(此列表是由字典countries的键组成的)
因此这句代码返回的是国籍NOC在列表中的运动员的数据
效果图如下:
小提琴图
小提琴图实际上就是两个对称的核密度曲线合并起来,然后中间是一个箱线图(也可以为其他图)组成的。通过小提琴图可以看出数据的分布情况。
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
tips = sns.load_dataset('tips',cache=True)
sns.catplot(x="day",y="total_bill",data=tips,kind="violin",hue="sex",split=True)
plt.tight_layout()
plt.savefig('13.png')
plt.show()
效果图如下:
小提琴的中间默认绘制的是箱线图,也可以修改为其他类型的。可以通过inner
参数修改,这个参数有以下几个选项:
box
:默认的,箱线图quartile
:四分位数。上下四分位数加中位数point
:散点stick
:线条
==四种小提琴图对比:==
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
tips = sns.load_dataset('tips',cache=True)
fig,axes=plt.subplots(2,2)
axe=sns.violinplot(x="day",y="total_bill",data=tips,inner='box',hue="sex",split=True,ax=axes[0][0])
axe.set_title('中间为箱线图的小提琴图')
axe=sns.violinplot(x="day",y="total_bill",data=tips,inner='quartile',hue="sex",split=True,ax=axes[0][1])
axe.set_title('中间为四分位数的小提琴图')
axe=sns.violinplot(x="day",y="total_bill",data=tips,inner='point',hue="sex",split=True,ax=axes[1][0])
axe.set_title('中间为散点的小提琴图')
axe=sns.violinplot(x="day",y="total_bill",data=tips,inner='stick',hue="sex",split=True,ax=axes[1][1])
axe.set_title('中间为线条的小提琴图')
plt.suptitle("中间图形不同的4种小提琴图")
plt.tight_layout()
plt.savefig('14.png')
plt.show()
效果图如下:

分类统计图
根据分类,==统计每个分类下的数据的个数或者比例==。有以下几种方式:
barplot()条形图
:catplot(kind="bar")
。pointplot()点线图
:catplot(kind="point")
。countplot()柱状图
:catplot(kind="count")
。
条形图
seaborn
中的条形图具有统计功能,可以统计出==比例,平均数==,也可以按照你想要的==统计函数==来统计
统计平均数
# 统计星期三到星期天的消费总额的平均数
sns.catplot(x="day",y="total_bill",data=tips,kind="bar")
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
tips = sns.load_dataset('tips',cache=True)
# 统计星期三到星期天的消费总额的平均数
sns.catplot(x="day",y="total_bill",data=tips,kind="bar")
plt.tight_layout()
plt.savefig('15.png')
plt.show()
结果如下:
统计比例
# 统计男女中获救的比例
sns.catplot(data=titanic,kind="bar",x="sex",y="survived")
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
titanic = sns.load_dataset('titanic',cache=True)
# 统计男女中获救的比例
sns.catplot(data=titanic,kind="bar",x="sex",y="survived")
plt.tight_layout()
plt.savefig('16.png')
plt.show()
结果如下:
自定义统计函数
# 自定义统计函数,统计出每个性别下获救的人数
sns.barplot(x="sex",y="survived",data=titanic,estimator=lambda values:sum(values))
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
titanic = sns.load_dataset('titanic',cache=True)
# 自定义统计函数,统计出每个性别下获救的人数
sns.barplot(x="sex",y="survived",data=titanic,estimator=lambda values:sum(values))
plt.tight_layout()
plt.savefig('17.png')
plt.show()
==lambda函数==见Python Lambda (w3school.com.cn)
结果如下:
柱状图
柱状图是专门用来统计某个单一变量出现数量的图形。示例代码如下:
sns.catplot(x="sex",data=titanic,kind="count")

也可以通过使用hue
参数来指定分组:
sns.catplot(x="day",kind="count",data=tips,hue="sex")

点线图
点线图可以非常方便的看到变量之间的趋势变化。示例代码如下:
sns.catplot(x="sex",y="survived",data=titanic,kind="point",hue="class")

分布绘图
分布绘图分为
- 单一变量分布
- 多变量分布
- 成对绘图
单变量分布
单一变量主要就是通过直方图来绘制。在seaborn
中直方图的绘制采用的是distplot
,其中dist
是distribution
的简写
示例代码如下:
sns.set(color_codes=True)
titanic = sns.load_dataset("titanic")
titanic = titanic[~np.isnan(titanic['age'])]
sns.distplot(titanic['age'])
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
sns.set(color_codes=True) #调色板颜色调整
titanic = sns.load_dataset('titanic',cache=True)
#titanic.to_csv('titanic.csv',index=False)
titanic = titanic[~np.isnan(titanic['age'])] #只保留age列是数字的数据,波浪号代表否定
sns.distplot(titanic['age'])
plt.tight_layout()
plt.savefig('21.png')
plt.show()
结果如下:
distplot()
有以下参数:
kde(核密度曲线)
:这个代表是否要显示kde
曲线,==默认显示==,如果显示kde
曲线,那么y
轴表示的就是==概率==;不显示kde
曲线则y轴表示==数量==。也可以设置为False
关掉。sns.distplot(titanic['age'],kde=False)
bins
:代表这个直方图显示的柱形的数量。也可以通过自己设置sns.distplot(titanic['age'],bins=30)
rug
:代表是否需要显示底部的胡须下线,下面的==胡须线越密集==的地方,说明==数据量越多==sns.distplot(titanic['age'],rug=True)
二变量分布
多变量分布图可以看出两个变量之间的分布关系。一般都是采用多个图进行表示。
多变量分布图采用的函数是jointplot
散点图
sns.jointplot(x="total_bill", y="tip", data=tips)
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
tips = sns.load_dataset("tips")
sns.jointplot(x="total_bill", y="tip", data=tips)
plt.savefig('24.png')
sns.jointplot(x="total_bill", y="tip", data=tips,kind="reg")
plt.tight_layout()
plt.savefig('25.png')
plt.show()
通过设置kind='reg'
可以设置==回归绘图==和==核密度曲线==
六边形图
对于一些==数据量特别大==的数据,用散点图不太利于观察,散点将会汇聚成一片
针对这种数据量比较大的情况,可以采用六边形图来绘制,也就是将之前的散点变成六边形,六边形有一个区间大小,==点落在这个六边形中越多颜色越深==
sns.jointplot(x="Height",y="Weight",data=china_athletes,kind="hex",gridsize=20)
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
athletes = pd.read_csv('athlete_events.csv')
china_athletes = athletes[athletes['NOC']=='CHN'] #只保留国籍NOC是CHN的数据
sns.jointplot(x="Height",y="Weight",data=china_athletes,kind="hex",gridsize=20)
plt.tight_layout()
plt.savefig('26.png')
plt.show()
==jointplot其他常用参数:==
- x,y,data:绘制图的数据。
- kind:scatter、reg、resid、kde、hex。
- color:绘制元素的颜色。
- height:图的大小,图会是一个正方形。
- ratio:主图和副图的比例,只能为一个整形。
- space:主图和副图的间距。
- dropna:是否需要删除x或者y值中出现了NAN的值。
- marginal_kws:副图的一些属性,比如设置bins、rug等。
成对绘图pairplot
pairplot
可以把某个数据集中某几个字段之间的关系图一次性绘制出来。比如iris
鸢尾花数据,我们想要看到petal_width
、petal_height
、sepal_width
以及sepal_height
之间的关系,那么我们就可以通过pairplot
来绘制
sns.pairplot(iris,vars=['sepal_length',"sepal_width",'petal_length','petal_width'])
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
iris = pd.read_csv('Iris.csv')
sns.pairplot(iris,vars=['sepal_length',"sepal_width",'petal_length','petal_width'])#成对绘图
plt.savefig('27.png')
sns.pairplot(iris,vars=['sepal_length',"sepal_width",'petal_length','petal_width'],diag_kind="kde",kind="reg")#修改对角线上的图为核密度曲线图,其余图为回归绘图
plt.tight_layout()
plt.savefig('28.png')
plt.show()
线性回归绘图
线性回归图可以帮助我们看到数据的关系趋势。在seaborn
中可以通过regplot
和lmplot
两个函数来实现。regplot
的x
和y
可以为Numpy数组
、Series
等变量。而lmplot
的x
和y
则必须为字符串,并且data
的值不能为空:
regplot(x,y,data=None)
lmplot(x,y,data)
regplot
sns.regplot(x=tips["total_bill"],y=tips["tip"])
lmplot
sns.lmplot(x="total_bill",y="tip",data=tips)
两种方法对比
regplot线性回归绘图 |
lmplot线性回归绘图 |
FacetGrid结构图
relplot
、catplot
、lmplot
等,这些函数可以通过col
、row
等在一个Figure
中绘制多个图。这些函数之所以有这些功能,是因为他们的底层使用了FacetGrid
来组装这些图形
普通的Axes绘图
seaborn
的绘图函数中也有大量的直接使用Axes
进行绘图的,凡是==函数名中已经明确显示了这个图的类型==(比如sns.scatterplot、sns.lineplot、sns.barplot
),这种图都是使用Axes
绘图的,Axes
绘图可以直接使用之前matplotlib
的一些方式设置图的元素
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
tips = sns.load_dataset('tips')
fig,[ax1,ax2] = plt.subplots(2,1,figsize=(10,10))
sns.scatterplot(x="total_bill",y="tip",data=tips,ax=ax1)
sns.barplot(x="day",y="total_bill",data=tips,ax=ax2)
plt.tight_layout()
plt.savefig('31.png')
plt.show()
此图包含两个子图:
FacetGrid基本使用
先创建一个FacetGrid
对象,然后再调用这个对象的map
方法。其中map
方法的==第一个参数是一个函数,后续map
将调用这个函数来绘制图形。后面的参数就是传给这个函数的参数==
tips = sns.load_dataset("tips")
g = sns.FacetGrid(tips)
g.map(plt.scatter,"total_bill","tip")
其中==第一个参数==是可以绘制Axes
图,并且可以接收color
参数的函数。可取的值如下:
参数 | 描述 | 对应使用了FacetGrid函数 |
---|---|---|
plt.plot/sns.lineplot | 绘制折线图 | sns.relplot(kind="line") |
plt.hexbin | 绘制六边形图形 | sns.jointplot(kind="hex") |
plt.hist | 绘制直方图 | sns.distplot |
plt.scatter/sns.scatterplot | 绘制散点图 | sns.relplot(kind="scatter") |
sns.stripplot | 绘制分类散点图 | sns.catplot(kind="strip") |
sns.swarmplot | 绘制散开来的分类散点图 | sns.catplot(kind="swarm") |
sns.boxplot | 绘制箱线图 | sns.catplot(kind="box") |
sns.violinplot | 绘制小提琴图 | sns.catplot(kind="violin") |
sns.pointplot | 绘制点线图 | sns.catplot(kind="point") |
sns.barplot | 绘制条形图 | sns.catplot(kind="bar") |
sns.countplot | 绘制数量柱状图 | sns.catplot(kind="count") |
sns.regplot | 绘制带有回归线的散点图 | sns.lmplot |
绘制多个图形
FacetGrid
可以通过col
和row
参数,来在一个Figure
上绘制多个图形,其中col
和row
都是数据集中的某个列的名字。只要指定这个名字,那么就会自动的按照指定列的值的个数绘制指定个数的图形
g = sns.FacetGrid(tips,col="day",col_wrap=2)
g.map(sns.regplot,"total_bill","tip")
添加颜色观察字段
通过添加hue
参数来控制每个图中元素的颜色来观察其他的字段
g = sns.FacetGrid(tips,col="day",hue="time")
g.map(sns.regplot,"total_bill","tip")
可以通过hue_kws
参数来添加hue
散点的属性,比如设置散点的样式等
设置每个图形的尺寸
使用FacetGrid
绘制出图形后,有时候我们想设置每个图形的尺寸或者是宽高比,那么我们可以通过在FacetGrid
中设置height
和aspect
来实现,其中height
表示的是每个图形的尺寸(默认是宽高一致),aspect
表示的是宽度/高度
的比例
g = sns.FacetGrid(tips,col="day",row="time",height=10,aspect=1.5)
g.map(sns.regplot,"total_bill","tip")
设置图例
默认情况下,不会添加图例,我们可以通过g.add_legend()
来添加图例
g = sns.FacetGrid(tips,col="day",hue="time")
g.map(sns.regplot,"total_bill","tip")
g.add_legend()

另外还可以:
- 通过
title
来控制图例的标题。 - 通过
label_order
来控制图例元素的顺序
sns.set(rc={"font.sans-serif":"simhei"})
g3 = sns.FacetGrid(tips,col="day",hue="time")
g3.map(plt.scatter,"total_bill","tip")
new_labels = ['午餐','晚餐']
g3.add_legend(title="时间")
for t,l in zip(g3._legend.texts,new_labels):
t.set_text(l)
设置标题
设置标题可以通过g.set_titles(template=None,row_template=None,col_template=None)
来实现,这三个参数分别代表的意义如下:
template
:给图设置标题,其中有{row_var}:绘制每行图像的名称
,{row_name}:绘制每行图像的值
,{col_var}:绘制每列图像的名称
,{col_name}:绘制每列图像的值
这几个参数可以使用col_template
:给图像设置列的标题。其中有{col_var}
以及{col_name}
可以使用。row_template
:给图像设置行的标题。其中有{row_var}
以及{row_name}
可以使用。
g = sns.FacetGrid(tips,col="day",row="time")
g.map(sns.regplot,"total_bill","tip")
g.set_titles(template="时间{row_name}/星期{col_name}")
设置坐标轴
g.set_axis_labels(x_var,y_var)
:一次性设置x
和y
的坐标的标题g.set_xlabels(label)
:设置x
轴的标题。g.set_ylabels(label)
:设置y
轴的标题。g.set(xticks,yticks)
:设置x
和y
轴的刻度。g.set_xticklabels(labels)
:设置x
轴的刻度文字。g.set_yticklabels(labels)
:设置y
轴的刻度文字。
g.set(xticks=range(0,60,10),xticklabels=['$0','$10','$20','$30','$40','$50'])
g.set
g.set
方法可以对FacetGrid
下的每个子图Axes
设置属性。其中可以设置的参数完全是根据Axes
的属性来的。比如可以设置每个Axes
的facecolor
等
样式风格设置
用seaborn
绘图,比直接使用matplotlib
绘图更加的美观。原因就是因为seaborn
中已经将一些属性的样式进行了调整。我们可以直接使用,也可以修改他的样式
自带的样式
seaborn
中自带了5种样式。分别是:
white
:纯白色的sns.set_style("white") axes = sns.scatterplot(x="total_bill",y="tip",data=tips)
whitegrid
:带有网格的白色的sns.set_style("whitegrid") axes = sns.scatterplot(x="total_bill",y="tip",data=tips)
dark
:灰色的sns.set_style("dark") axes = sns.scatterplot(x="total_bill",y="tip",data=tips)
darkgrid
:带有网格的灰色的(网格线是白色的)sns.set_style("darkgrid") axes = sns.scatterplot(x="total_bill",y="tip",data=tips)
ticks
:白色的,并且在轴上带有刻度条的sns.set_style("ticks") axes = sns.scatterplot(x="total_bill",y="tip",data=tips)
风格设置函数
在seaborn
中,可以通过三个函数来设置样式。分别是sns.set_style
、sns.axes_style
以及sns.set
方法
sns.axes_style
只能通过with
语句调用
with sns.axes_style("dark",{"ytick.left":True}):
sns.scatterplot(x="total_bill",y="tip",data=tips)
sns.set
除了style
以外,还可以设置调色板,字体,字体大小,颜色等,也可以设置其他的matplotlib.rcParams
可以接收的参数
sns.set(context='notebook', style='darkgrid', palette='deep', font='sans-serif', font_scale=1, color_codes=True, rc=None)
sns.set(rc={"lines.linewidth":4})
fmri = sns.load_dataset("fmri")
sns.lineplot(x="timepoint",y="signal",data=fmri)
实例
附:seaborn绘制子图的方法
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei'] #字体改为黑体,为了正常显示中文
plt.rcParams['axes.unicode_minus']=False #正常显示负号
tips = sns.load_dataset('tips',cache=True)
fig,axes=plt.subplots(2,2)
axe=sns.violinplot(x="day",y="total_bill",data=tips,inner='box',hue="sex",split=True,ax=axes[0][0])
axe.set_title('中间为箱线图的小提琴图')
axe=sns.violinplot(x="day",y="total_bill",data=tips,inner='quartile',hue="sex",split=True,ax=axes[0][1])
axe.set_title('中间为四分位数的小提琴图')
axe=sns.violinplot(x="day",y="total_bill",data=tips,inner='point',hue="sex",split=True,ax=axes[1][0])
axe.set_title('中间为散点的小提琴图')
axe=sns.violinplot(x="day",y="total_bill",data=tips,inner='stick',hue="sex",split=True,ax=axes[1][1])
axe.set_title('中间为线条的小提琴图')
plt.suptitle("中间图形不同的4种小提琴图")
plt.tight_layout()
plt.savefig('14.png')
plt.show()