PINN物理信息网络 | 物理的神经网络PINNs与有限元方法FEM比较

本文对比了物理信息神经网络(PINNs)和有限元方法(FEM)在求解偏微分方程(PDEs)中的表现。虽然PINNs在高维问题和不需要空间离散化的场景下表现良好,但在计算成本和精度方面,FEM在大多数情况下仍占优势。PINNs在解决Allen-Cahn方程等特定问题时遇到挑战,而FEM需要精细网格但提供更稳定的结果。在参数化PDEs时,神经网络可以作为有效替代方案,但训练和构建时间需谨慎考虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

偏微分方程在数学建模中对于许多物理、生物学和其他科学过程和系统扮演着基础性的角色。为了模拟这些过程和系统,偏微分方程(PDE)的解通常需要通过数值方法来近似。例如,有限元方法就是一种常用的标准方法。近年来,深度神经网络在各种近似任务中取得的成功激励人们动机在偏微分方程数值解的计算中使用它们。这些称为物理信息神经网络及其变体已证明能够成功估计大范围的偏微分方程。另外,物理神经信息网络和有限元方法主要是孤立地被研究的。在这项工作中,我们通过系统的计算研究比较了这两个问题数值解各种线性和非线性偏微分方程的一种方法的应用:一维、二维和三维的泊松方程,一维的Allen-Cahn方程,以及一维和二维的半线性薛定谔方程。然后我们比较了计算成本和估计精度。在求解时间和精度方面,物理信息神经网络在我们的研究中尚未能超越有限元方法。某些实验中,它们在评估求解 PDE 时更快。
之后单独调查了每个 PDE,让我们讨论并从整体结果中得出结论。

考虑到解决时间和准确性,在我们的研究中,PINN 无法超过有限元方法。除了薛定谔 1D 测试中实部和虚部的不确定结果之外,FEM 解通常在相同的精度或更高的准确度下更快。

解决 PDE 之后,PINN 在某些情况下在点评估方面有时更快,这一点在 3D Poisson 测试中得到了证明。因此,当需要在非常细的网格上评估 PDE 时,可以考虑解决 PINN。在我们的例子中,FEM的解决时间通常比继续使用FEM解决PDE要快&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值