【PINN物理信息网络】基于PINN物理信息网络的离散时间推理方法(python)

本文介绍了基于PINN(Physics-Informed Neural Network)的离散时间推理方法,该方法结合物理规律和神经网络,用于从离散时间序列数据中进行系统状态推理和预测。通过将物理约束嵌入网络损失函数,PINN能够学习并预测物理系统的动力学行为,适用于物理系统建模、动力学分析等领域。

【PINN物理信息网络】基于PINN物理信息网络的离散时间推理方法(python)

运行结果

在这里插入图片描述
在这里插入图片描述

文章介绍

基于PINN(Physics-Informed Neural Network)物理信息网络的离散时间推理方法是一种结合了物理规律和神经网络的方法,用于从离散时间序列数据中进行系统状态推理和预测。PINN方法能够学习系统的物理行为,并利用这些物理规律来提高预测的准确性和鲁棒性。

PINN物理信息网络的离散时间推理方法的基本思想是将物理规律嵌入到神经网络中,通过网络的训练来学习系统的动力学行为。这种方法的优点在于不需要显式地指定物理模型,而是通过在网络的损失函数中引入物理约束来约束网络的学习过程。

基于PINN物理信息网络的离散时间推理方法具有广泛的应用。它可以用于物理系统建模、动力学分析、时间序列预测等领域。通过结合物理规律和神经网络的优势,这种方法能够从离散时间序列数据中学习系统的动力学行为,并进行状态推理和预测。

基本步骤

基于PINN物理信息网络的离散时间推理方法的基本步骤:

  1. 数据准备:收集离散时间序列数据,包括已知的系统状态和对应的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值