【PINN物理信息网络】基于PINN物理信息网络的离散时间推理方法(python)
运行结果


文章介绍
基于PINN(Physics-Informed Neural Network)物理信息网络的离散时间推理方法是一种结合了物理规律和神经网络的方法,用于从离散时间序列数据中进行系统状态推理和预测。PINN方法能够学习系统的物理行为,并利用这些物理规律来提高预测的准确性和鲁棒性。
PINN物理信息网络的离散时间推理方法的基本思想是将物理规律嵌入到神经网络中,通过网络的训练来学习系统的动力学行为。这种方法的优点在于不需要显式地指定物理模型,而是通过在网络的损失函数中引入物理约束来约束网络的学习过程。
基于PINN物理信息网络的离散时间推理方法具有广泛的应用。它可以用于物理系统建模、动力学分析、时间序列预测等领域。通过结合物理规律和神经网络的优势,这种方法能够从离散时间序列数据中学习系统的动力学行为,并进行状态推理和预测。
基本步骤
基于PINN物理信息网络的离散时间推理方法的基本步骤:
- 数据准备:收集离散时间序列数据,包括已知的系统状态和对应的
本文介绍了基于PINN(Physics-Informed Neural Network)的离散时间推理方法,该方法结合物理规律和神经网络,用于从离散时间序列数据中进行系统状态推理和预测。通过将物理约束嵌入网络损失函数,PINN能够学习并预测物理系统的动力学行为,适用于物理系统建模、动力学分析等领域。
订阅专栏 解锁全文
1074

被折叠的 条评论
为什么被折叠?



