质数与合数


一、基本定义

1.约数与倍数

设 a,b 是两个整数,且 a != 0,如果存在另一个整数 q,使得 b = aq,那么就说 b 可被 a 整除,记作 a | b,且称 b 是 a 的 倍数,a 是 b 的约数

【整除的3个常用性质】

(1)若 a | b 且 b | c,那么 a | c.
(2)若 a | b 且 a | c,那么对任意的整数 x, y,有 a | (bx + cy).
(3)设整数 m != 0,那么 a|b 等价于 ma | mb.

2.质数

设正整数 p != 0,1,如果它除了 1 和 p 本身外没有其他的约数,那么就称 p 为质数。

3.合数

若正整数 a != 0,1,且 a 不是质数,则称 a 为合数


二、质数的判定

1.朴素试除法

时间复杂度为O(n). 如下所示:

bool is_prime(int n){
    if (n < 2) return false;
    for (int i = 2; i <= n; i++)
        if (n % i == 0)
            return false;
    return true;
}

2.优化后的试除法

优化:当一个数不是质数时,必定存在两个约数,一个大于等于sqrt(n),另一个小于sqrt(n),所以可以优化,只判断能否被小于sqrt(n)的数整除。

由于 sqrt() 函数运行比较慢,而 i * i <= n 可能会带来溢出,所以最佳写法是 i <= n / i 。时间复杂度为O(sqrt(n)). 如下所示:

bool is_prime(int n){
    if (n < 2) return false;
    for (int i = 2; i <= n / i; i++)
        if (n / i == 0)
            return false;
    return true;
}

三、分解质因数——试除法

思路:从小到大尝试 n 的所有因数,每个正整数都能够以唯一的方式表示成它的质因数的乘积。

结论:n 中最多只包含一个大于 sqrt(n) 的因子
反证法证明:如果有两个大于sqrt(n) 的因子,那么相乘会大于 n。于是我们发现只有一个大于sqrt(n)的因子,可以对其进行优化。如果最后 n 还是 >1,说明这就是大于 sqrt(n) 的唯一质因子,输出即可。

时间复杂度为 O(log n) ~ O(sqrt(n)). 如下所示:

void divide(int x){
    for (int i = 2; i <= x / i; i++){
        if (x % i == 0)
        {
            int s = 0;
            while (x % i == 0)
            {
                x /= i;
                s++;
            }
            
            printf("%d %d\n", i, s);
        }
    }
    
    if (x > 1)
        printf("%d %d\n", x, 1);
    puts("");
}

四、筛质数

1.朴素筛法

思路:从 2 到 n 枚举,(一个数的倍数一定是合数)筛掉它的倍数,如果该数没有被筛掉,那它就是一个质数。

时间复杂度为 O(n log n). 如下所示:

int primes[N]//存素数
int cnt;//记录素数个数
bool st[N];//标记该数是否被筛掉,默认为false,没有被筛掉

void get_primes(int n){
    for (int i = 2; i <= n; i++){
        if (!st[i])//如果没有被筛掉
        {
            //把素数存起来
            primes[cnt++] = i;
        }
        
        for (int j = i; j <= n; j += i)//不管是合数还是质数,都用来筛掉它后面的倍数
            st[j] = true;
    }
}

2.埃氏筛法

(1)调和级数:当 n 趋于无穷大时,1 + 1/2 + 1/3 + … + 1/n = ln n + C.

(2)对朴素筛法的优化:任何一个合数都能写成几个质数相乘的形式。只需要判断 2~n-1 中的所有质数,只要它不是 n 的约数,那么 n 就是一个质因数。

(3)质数定理:1~n 当中有 n/ln n 个质数。

(4)思路:从小到大枚举所有的质数,然后删去它们的所有的倍数,就删去了所有的合数,剩下的就是质数。

时间复杂度为 O(n ln ln n). 如下所示:

int primes[N];//存素数
int cnt;//记录素数个数
bool st[N];//标记该数是否被筛掉,默认为false,没有被筛掉

void get_primes(int n){
    for (int i = 2; i <= n; i++){
        if (!st[i]){
            primes[cnt++] = i;
            for (int j = i; j <= n; j += i)//用质数把所有的合数都筛掉
                st[j] = true;
        }
    }
}

3.欧拉筛法(线性筛)

核心思路:用最小质因子去筛合数

当 i % primes[j] != 0 时,
说明此时遍历到的 primes[j] 不是 i 的质因子,只可能是此时 primes[j] 的最小质因子,
所以 primes[j] * i 的最小质因子就是 primes[j].
当有 i % primes[j] == 0 时,
因为我们是从小到大遍历的,说明此时的 prime[j] 是满足条件的第一个数,即找到了primes[j] 就是 i 的最小质因子,
因此 primes[j] * i 的最小质因子也就是 primes[j],
之后用 st[primes[j + 1] * i] = true 去筛合数时,就不是用最小质因子去更新了,
所以此时应该退出循环,避免重复筛选。

如下所示:

int primes[N];//存质数
int cnt;//记录素数个数
bool st[N];//i为质数则为false否则为true

void get_primes(int n){
    for (int i = 2; i <= n; i++){
        if (!st[i])
            primes[cnt++] = i;
        for (int j = 0; primes[j] <= n / i; j++){
            //标记,pj一定是pj*i的最小质因子
            st[primes[j] * i] = true;
            //从小到大遍历,如果 i%pj=0,则pj一定是i的最小公因子
            if (i % primes[j] == 0)
                break;
        }
    }
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BraumAce

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值