无约束低分辨率人脸识别综述一:用于低分辨率人脸识别的数据集

这篇博客介绍了用于极低分辨率人脸识别的几个数据集,包括异构的SCface、PointandShot、UCCSface和IJB-S,以及同质的QMUL-Survface和QMUL-TinyFace。这些数据集涵盖了不同条件下的低分辨率图像,用于研究人脸识别的挑战,如域间隙和图像质量问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      目前,监控场景下的极低分辨率人脸识别是一个非常小的研究领域,可用的数据集非常有限。其中SCfacePoint and ShotIJB-SUCCSfaceQMUL SurvfaceQMUL Tinyface是用于无约束极低分辨率人脸识别的可用基准数据集。

异构人脸识别基准测试数据集(都包含高分辨率和本地低分辨率图像):SCface、Point and Shot、UCCSface和IJB-S;

同质人脸识别数据集(大量的图像和身份):QMUL-Survface和QMUL-TinyFace

 PS:Source:数据获得的场景;

         Qquality:可用图像的类型;(HR——高分辨率图像,LR——极低分辨率图像,blur——模糊的低分辨率图像;

         Static image/video:指示数据集是否具有静态图像,是否还包含视频数据;

数据集链接:

1、异构人脸数据集

1.1 SCface

      SCface图像是在不受控制的室内环境中使用五个不同质量的视频监控摄像机拍摄。该数据集包含130名受试者的4160张静态图像。

https://www.scface.org/

1.2 Point and Shoot

       Point and Shoot包括静止图像和视频。静止照片有9376张,共293人。该数据集还包括2802段265人的简单动作视频,这265人静态图像293人的子集。

https://www.nist.gov/programs-projects/point-and-shoot-face-recognition-challenge-pasc

 1.3 UCCSface

      UCCS展示了可操作的人脸识别场景的特性。数据集包含来自308个人的6337 张图像。使用照相机获取图像。摄像机放置在办公室内,聚焦在离办公室100m处的室外人行道上,产生18m像素的场景图像。图像以100ms的间隔拍摄,产生大约 10 张不同焦点的照片,每个特定间隔有多个视图和表情。

https://vast.uccs.edu/Opensetface/

1.4 IJB-S

       IJB-S数据集包含202个身份的静态图像和视频。该数据集收集时共有350个监控视频,5656个注册图像和202个注册视频。

 Face Challenges | NIST

2、同质人脸数据集

2.1 QMUL-Survface

         QMUL-Survface是以开发低分辨率人脸识别构建的。该数据集包含 463507 张人脸图像,15573 个不同身份。由于在开放空间和不受限制的时间内出现任意大量的非目标人员,因此在开放式设置中人脸识别通常更困难。除了低分辨率问题,该数据集还有其它不受控制的协变量和噪声,例如照明变化、表情、遮挡、背景杂波和压缩伪影。所有这些因素都会在不同程度上导致推理的不确定性。

QMUL-SurvFace

2.2 QMUL-TinyFace

       QMUL-TinyFace数据集有169403张原生低分辨率人脸图像(平均 20×16 像素),来自5139个标记的身份,用于1:N识别测试。TinyFace中的所有低分辨率人脸都是从公共网络数据中收集的,这些数据是在姿势、光照、遮挡和背景不受控制的条件下采集的。

 总结

      极低分辨率的人脸识别问题有两种情况:同质和异质。在同质人脸识别中,我们匹配来自同一个人脸的图像源域。此时识别的图像和其余参考图像均来自无约束低分辨率人脸域。在异构人脸识别中,我们将来自不同领域的图像进行匹配:用于识别的低分辨率图像与参考的高分辨率库图像。因此,从监控摄像机拍摄的VLR探针图像和在受控环境中拍摄的高分辨率参考画廊图像之间就存在域间隙。用于识别的低分辨率图像的分辨率为32*32或更低,参考库高分辨率图像的分辨率为100*100或更高。但是由于在不同条件下识别的图像和参考的分辨率图像之间存在域差异,异构人脸识别是最难解决的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一瞬にして失う

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值