GCD vs LCM

You are given a positive integer nn. You have to find 44 positive integers a, b, c, da,b,c,d such that

a + b + c + d = na+b+c+d=n, and
\gcd(a, b) = \operatorname{lcm}(c, d)gcd(a,b)=lcm(c,d).
If there are several possible answers you can output any of them. It is possible to show that the answer always exists.

In this problem \gcd(a, b)gcd(a,b) denotes the greatest common divisor of aa and bb, and \operatorname{lcm}(c, d)lcm(c,d) denotes the least common multiple of cc and dd.

Input
The input consists of multiple test cases. The first line contains a single integer tt (1 \le t \le 10^41≤t≤10
4
) — the number of test cases. Description of the test cases follows.

Each test case contains a single line with integer nn (4 \le n \le 10^94≤n≤10
9
) — the sum of aa, bb, cc, and dd.

Output
For each test case output 44 positive integers aa, bb, cc, dd such that a + b + c + d = na+b+c+d=n and \gcd(a, b) = \operatorname{lcm}(c, d)gcd(a,b)=lcm(c,d).

Sample 1
Inputcopy Outputcopy
5
4
7
8
9
10
1 1 1 1
2 2 2 1
2 2 2 2
2 4 2 1
3 5 1 1
Note
In the first test case \gcd(1, 1) = \operatorname{lcm}(1, 1) = 1gcd(1,1)=lcm(1,1)=1, 1 + 1 + 1 + 1 = 41+1+1+1=4.

In the second test case \gcd(2, 2) = \operatorname{lcm}(2, 1) = 2gcd(2,2)=lcm(2,1)=2, 2 + 2 + 2 + 1 = 72+2+2+1=7.

In the third test case \gcd(2, 2) = \operatorname{lcm}(2, 2) = 2gcd(2,2)=lcm(2,2)=2, 2 + 2 + 2 + 2 = 82+2+2+2=8.

In the fourth test case \gcd(2, 4) = \operatorname{lcm}(2, 1) = 2gcd(2,4)=lcm(2,1)=2, 2 + 4 + 2 + 1 = 92+4+2+1=9.

In the fifth test case \gcd(3, 5) = \operatorname{lcm}(1, 1) = 1gcd(3,5)=lcm(1,1)=1, 3 + 5 + 1 + 1 = 103+5+1+1=10.

#include<stdio.h>
int main(void){
    int n;
    scanf("%d",&n);
    int m;
    int a[4]={1,1,1,1};
    for(int i=0;i<n;i++){
        scanf("%d",&m);
        a[0]+=(m-4);
        for(int l=0;l<4;l++){
            printf("%d ",a[l]);
        }
        printf("\n");
        a[0]=1;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值