计算思维训练——神奇的等式

神奇的等式

成绩: 5 / 折扣: 0.8

大贤者福尔在研究数学问题时,发现有一些自然数能够构成一个形如下式的等式,颇为神奇。eq?%5Cfrac%7Bx0x1x2x3x4%7D%7Bx5x6x7x8x9%7D%3DN

其中x_i, (0 <= i <= 9)xi​,(0≤i≤9)为0−9之间的数字,且各不相同。福尔想知道给定NN的值时,有多少数能够满足这种关系?

输入

输入数据有若干行,每行包括单个整数N (2 \le N \le 79)N(2≤N≤79)。

输出

对每行输入数据,先在单独的行中输出如Case x:的测试样例信息,x为测试样例编号,从1开始。若存在满足条件的数值,则分别按分母递减的顺序依次在独立的行中输出各个等式;若不存在满足条件的数,则在单独的行中输出No such numbers.。每个输出结果的前面保留4个空格。

示例输入

68 69

示例输出

Case 1: 98736/01452=68
Case 2: No such numbers

 这道题不难,我可以把这道题目转化一下,x0​x1​x2​x3​x4=x5x6x7x8x9*N;

可以采用枚举的办法解决这道问题,利用一个桶判断x0​x1​x2​x3​x4x5x6x7x8x9里是否含有0~9就可以了。

#include <iostream>
using namespace std;
int main() {
	int n, cnt = 1;
	while (cin >> n) {
		int flag = 1; 
		printf("Case %d:\n",cnt);
		for (int i = 59876; i > 1233; i--) {
			int sum = n * i, tong[10] = { 0 };
			int fuzhu1 = sum, fuzhu2 = i;
			if (i < 10000)
				tong[0]++;
			while (fuzhu1) {
				int x = fuzhu1 % 10;
				tong[x]++;
				fuzhu1/= 10;
			}
			while (fuzhu2) {
				int x = fuzhu2 % 10;
				tong[x]++;
				fuzhu2/= 10;
			}
			int ex_number = 1;
			for (int j = 0; j < 10; j++) {
				if (tong[j] != 1) {
					ex_number = 0;
					break;
				}
			}
			if (ex_number) {
				if(i<10000)
					printf("    %d/0%d=%d\n",sum, i, n);
				else
					printf("    %d/%d=%d\n",sum, i, n);
				flag = 0;
			}
		}
		if (flag)
			printf("    No such numbers\n");
		cnt++;	
	}
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值