Problem F. 多项式化简 (100)

 

时间限制 1000 ms   内存限制 256 MB


现有一个多项式Pn(x)Pn(x),其满足

 

eq?Pn%28x%29%3D%5Cfrac%7B1%7D%7B2%5E%7Bn%7Dn%21%7D%5Cfrac%7B%5Cmathrm%7Bd%5E%7Bn%7D%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%5E%7Bn%7D%7D%5B%28x%5E%7B2%7D-1%29%5E%7B2%7D%5D


其中eq?%5Cfrac%7B%5Cmathrm%7Bd%5E%7Bn%7D%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%5E%7Bn%7D%7D为n阶导数。小Q认为这个式子太复杂了,希望你能帮他化简。

输入数据

一个正整数 n(2≤n≤30)n(2≤n≤30) 表示多项式次数。

输出数据

一行,共n+1n+1个数,表示多项式按幂次从高到低的系数。

样例输入

3

样例输出

5/2 0 -3/2 0

说明

化简后的多项式为eq?P_%7B3%7D%28x%29%3D%5Cfrac%7B5%7D%7B2%7Dx%5E%7B3%7D-%5Cfrac%7B3%7D%7B2%7Dx

 

题解:

首先对eq?Pn%28x%29%3D%5Cfrac%7B1%7D%7B2%5E%7Bn%7Dn%21%7D%5Cfrac%7B%5Cmathrm%7Bd%5E%7Bn%7D%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%5E%7Bn%7D%7D%5B%28x%5E%7B2%7D-1%29%5E%7B2%7D%5D进行化简,

我们先对二项式进行展开,可以得到:eq?%28x%5E%7B2%7D-1%29%5E%7Bn%7D%20%3D%5Csum_%7Bi%3D0%7D%5E%7Bn%7DC_%7Bn%7D%5E%7Bi%7D%28-1%29%5E%7Bn-i%7Dx%5E%7B2i%7D%3D%3D%5Csum_%7Bi%3D0%7D%5E%7Bn%7D%5Cfrac%7Bn%21%7D%7Bi%21%28n-1%29%21%7D%28-1%29%5E%7Bn-i%7Dx%5E%7B2i%7D

其中第i项的n阶导数为:

eq?%5Cfrac%7B%5Cmathrm%7Bd%7D%5En%20%7D%7B%5Cmathrm%7Bd%7D%20x%5E%7Bn%7D%7D%5Cfrac%7Bn%21%7D%7Bi%21%28n-1%29%21%7D%28-1%29%5E%7Bn-i%7Dx%5E%7B2i%7D%3D%5Cfrac%7Bn%21%7D%7Bi%21%28n-1%29%21%7D%28-1%29%5E%7Bn-i%7Dx%5E%7B2i-n%7D%282i%29%282i-1%29...%282i-n+1%29%20%3D%5Cfrac%7Bn%21%7D%7Bi%21%28n-1%29%21%7D%28-1%29%5E%7Bn-i%7Dx%5E%7B2i-n%7D%5Cfrac%7B%282i%29%21%7D%7B%282i-n%29%21%7D

在求解的过程中,因为n可能为30,在求解的过程中可能爆int,所以我们对n!进行质因数分解;

 

 

我们可以看到二项式中x的系数是2i,所以在求的过程中,有些项直接就是零,

#include <iostream>
#include<string.h>
#include <algorithm>
using namespace std;
int cnt=0;
int prime[17] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59 };
 int bucket[17];//储存质因数的个数
long long ksm(int a, int b) {  //快速幂
	long long ans = 1;
	while (b > 0) {
		if (b % 2 == 1) {
			ans = a * ans;
		}
		a = a * a;
		b /= 2;
	}
	return ans;
}
void factprime(int n, int fenzi) {//分子做加法,分母做减法
	//n!的质因数分解
	for (int i = 0; i < 17; i++) {
		int temp = n;
		while (temp) {
			bucket[i] += fenzi * temp / prime[i];
			temp /= prime[i];
		}
	}
}
void run(int k,int n) {
	int i = (k + n) / 2;    //计算阶乘中的i
	memset(bucket, 0, sizeof bucket);
	factprime(2 * i, 1);
	factprime(n-i, -1);
	factprime(i, -1);
	factprime(2 * i - n, -1);
	bucket[0] -= n; //除以2^ n
	long long p=1, q=1;//计算分子、分母
	for (int i = 0; i < 17; i++) {
		if (bucket[i] < 0) {
			p *= ksm(prime[i], -bucket[i]);
		}
		else
			q *= ksm(prime[i], bucket[i]);
	}
	if (cnt)
		printf(" ");    //打印空格
	if((n-i)%2==1)
      printf("-");   //计算-1项的系数
	printf("%lld/%lld", q, p);
}										

int main() {
	int n;
	cin >> n;
	for (int i = n; i >= 0; i--) {  //判断有些项是0
		if (n % 2 == 0) {
			if (i % 2 == 0) {
				run(i,n);
			}
			else {
				if (cnt)
					printf(" ");
				printf("0");
			}
		}
		else {
			if (i % 2 == 1) {
				run(i,n);
			}
			else {
				if (cnt)
					printf(" ");
				printf("0");
			}
		}
		cnt++;
	}
}

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值