leetcode刷题28——买卖股票的最佳时机系列

1.买卖股票的最佳时机
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int sum=0,ans=0;
        for(int i=1;i<prices.size();++i)
        {
            sum=max(sum+prices[i]-prices[i-1],0);
            ans=max(ans,sum);
        }
        return ans;
    }
};

或者

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int buy=INT_MAX,sell=0;
        for(int p:prices)
        {
            buy=min(buy,p);
            sell=max(sell,p-buy);
        }
        return sell;
    }
};

2.买卖股票的最佳时机 II
给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int sum=0,ans=0;
        for(int i=1;i<prices.size();++i)
        {
            sum=max(sum+prices[i]-prices[i-1],sum);
            ans=max(ans,sum);
        }
        return ans;
    }
};

或者

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int buy=-prices[0],sell=0;
        for(int i=1;i<prices.size();++i)
        {
            buy=max(buy,sell-prices[i]);
            sell=max(sell,buy+prices[i]);
        }
        return sell;
    }
};

3.买卖股票的最佳时机 III
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成两笔交易。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int firbuy=INT_MAX,firsell=0,secbuy=INT_MAX,secsell=0;
        for(int p:prices)
        {
            firbuy=min(firbuy,p);
            firsell=max(firsell,p-firbuy);
            secbuy=min(secbuy,p-firsell);
            secsell=max(secsell,p-secbuy);
        }
        return secsell;
    }
};

4.买卖股票的最佳时机 IV
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        vector<int> buy(k + 1, INT_MAX), sell(k + 1, 0);
        for(int p:prices)
        {
            for (int i = 1; i <= k; ++i)
            {
                buy[i]=min(buy[i],p-sell[i-1]);
                sell[i]=max(sell[i],p-buy[i]);
            }
        }
        return sell[k];
    }
};

5.最佳买卖股票时机含冷冻期
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。​设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
在这里插入图片描述
在这里插入图片描述

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.empty()) 
            return 0;
        int n = prices.size();
        vector<vector<int>> f(n, vector<int>(3));
        f[0][0] = -prices[0];
        for (int i = 1; i < n; ++i) 
        {
            f[i][0] = max(f[i - 1][0], f[i - 1][2] - prices[i]);  //f[i][0]: 手上持有股票的最大收益
            f[i][1] = f[i - 1][0] + prices[i]; //f[i][1]: 手上不持股票,且处于冷冻期中的累计最大收益
            f[i][2] = max(f[i - 1][1], f[i - 1][2]); //f[i][2]: 手上不持股票,且不在冷冻期中的累计最大收益
        }
        return max(f[n - 1][1], f[n - 1][2]);
    }
};

空间优化:空间优化
注意到上面的状态转移方程中,f[i][…] 只与 f[i-1][…]f有关,而与 f[i-2][…]及之前的所有状态都无关,因此我们不必存储这些无关的状态。也就是说,我们只需要将 f[i-1][0],f[i-1][1],f[i-1][2] 存放在三个变量中,通过它们计算出 f[i][0],f[i][1],f[i][2]并存回对应的变量,以便于第 i+1天的状态转移即可。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.empty()) 
            return 0;
        int n = prices.size();
        int f0 = -prices[0];
        int f1 = 0;
        int f2 = 0;
        for (int i = 1; i < n; ++i)
        {
            int newf0 = max(f0, f2 - prices[i]);
            int newf1 = f0 + prices[i];
            int newf2 = max(f1, f2);
            f0 = newf0;
            f1 = newf1;
            f2 = newf2;
        }
        return max(f1, f2);
    }
};

6.买卖股票的最佳时机含手续费
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。返回获得利润的最大值。注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
在这里插入图片描述

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2));
        dp[0][0] = 0, dp[0][1] = -prices[0];
        for (int i = 1; i < n; ++i)
        {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        }
        return dp[n - 1][0];
    }
};

空间优化:

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int buy=-prices[0],sell=0;
        for(int i=1;i<prices.size();++i)
        {
            int newbuy=max(buy,sell-prices[i]);
            int newsell=max(sell,buy+prices[i]-fee);
            buy=newbuy;
            sell=newsell;
        }
        return sell;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

给算法爸爸上香

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值