机器人工具箱(Robotics Toolbox)帮助文档翻译2
第二章 齐次变换矩阵
在机器人领域中,有很多可能的方法描述位置和方向,但是齐次变换是最适合于MATLAB强大的针对矩阵运算工具。齐次变换描述了笛卡尔坐标系中的平移和方位。
单纯地沿X方向平移0.5m可以描述为:
transl(0.5, 0.0, 0.0)
ans =
1.0000 0 0 0.5000
0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000
绕Y轴旋转90度可以描述为:
troty(pi/2)
ans =
0 0 1 0
0 1 0 0
-1 0 0 0
0 0 0 1
绕Z轴旋转-90度:
trotz(-pi/2)
ans =
0 1 0 0
-1 0 0 0
0 0 1 0
0 0 0 1
这些可以通过乘法连接起来:
t = transl(0.5, 0.0, 0.0) * troty(pi/2) * trotz(-pi/2)
t =
0 0 1.0000 0.5000
-1.0000 0 0 0
0 -1.0000 0 0
0 0 0 1.0000
如果这个变换表示新坐标系的原点关于世界坐标系原点的变换,那么新坐标系的原点为:
t * [0 0 0 1]'
ans =
0.5000
0
0
1.0000
新坐标系的方向用欧拉角表示为:
tr2eul(t)
ans =
0 1.5708 -1.5708
或者用r-p-y角表示为:
tr2rpy(t)
ans =
-1.5708 0 -1.5708
重要的是要注意,变换乘法通常是不可交换的,如下面的示例所示:
trotx(pi/2) * trotz(-pi/8)
ans =
0.9239 0.3827 0 0
0 0 -1.0000 0
-0.3827 0.9239 0 0
0 0 0 1.0000
trotz(-pi/8) * trotx(pi/2)
ans =
0.9239 0 -0.3827 0
-0.3827 0 -0.9239 0
0 1.0000 0 0
0 0 0 1.0000
我们看到,通过颠倒乘法变换的顺序,结果是完全不同的。