机器人工具箱(Robotics Toolbox)帮助文档翻译2

文章介绍了在机器人领域中,如何使用RoboticsToolbox在MATLAB中进行齐次变换矩阵操作,包括平移和旋转的描述,以及如何通过矩阵乘法组合多个变换。此外,还提到了变换矩阵用于表示坐标系的转换,并展示了变换顺序对结果的影响。
摘要由CSDN通过智能技术生成

机器人工具箱(Robotics Toolbox)帮助文档翻译2

第二章 齐次变换矩阵

在机器人领域中,有很多可能的方法描述位置和方向,但是齐次变换是最适合于MATLAB强大的针对矩阵运算工具。齐次变换描述了笛卡尔坐标系中的平移和方位。

单纯地沿X方向平移0.5m可以描述为:

transl(0.5, 0.0, 0.0)

ans =
1.0000 0 0 0.5000
0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000

绕Y轴旋转90度可以描述为:

troty(pi/2)

ans =
0 0 1 0
0 1 0 0
-1 0 0 0
0 0 0 1

绕Z轴旋转-90度:

trotz(-pi/2)

ans =
0 1 0 0
-1 0 0 0
0 0 1 0
0 0 0 1

这些可以通过乘法连接起来:

t = transl(0.5, 0.0, 0.0) * troty(pi/2) * trotz(-pi/2)

t =
0 0 1.0000 0.5000
-1.0000 0 0 0
0 -1.0000 0 0
0 0 0 1.0000

如果这个变换表示新坐标系的原点关于世界坐标系原点的变换,那么新坐标系的原点为:

t * [0 0 0 1]'

ans =
0.5000
0
0
1.0000

新坐标系的方向用欧拉角表示为:

tr2eul(t)

ans =
0 1.5708 -1.5708

或者用r-p-y角表示为:

tr2rpy(t)

ans =
-1.5708 0 -1.5708

重要的是要注意,变换乘法通常是不可交换的,如下面的示例所示:

trotx(pi/2) * trotz(-pi/8)

ans =
0.9239 0.3827 0 0
0 0 -1.0000 0
-0.3827 0.9239 0 0
0 0 0 1.0000

trotz(-pi/8) * trotx(pi/2)

ans =
0.9239 0 -0.3827 0
-0.3827 0 -0.9239 0
0 1.0000 0 0
0 0 0 1.0000

我们看到,通过颠倒乘法变换的顺序,结果是完全不同的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值