服务器部署开源大模型完整教程 Ollama+Llama3+open-webui

本文介绍了如何在Linux服务器上使用Ollama工具部署大模型Llama3,并配合open-webui实现Web界面交互。步骤包括安装Ollama、选择和下载适合的模型、部署open-webui以及管理用户权限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

最近大语言模型大火,正好最近打比赛可能会用得上LLMs,今天就在学校的服务器上面进行一次部署。这样之后就可以直接在内网里面使用学校的LLMs了。

介绍

Ollama:一款可以让你在本地快速搭建大模型的工具

官网:https://ollama.com/

github:https://github.com/ollama/ollama

Llama3:谷歌开源的大模型

open-webui:非常不错的大模型webui,也就是界面展示

github:https://github.com/open-webui/open-webui

详细部署
部署Ollama

部署ollama非常简单直接输入:

curl -fsSL https://ollama.com/install.sh | sh

在这里插入图片描述

安装成功后使用下述命令查看版本信息,如果可以显示则代表已经安装好:

ollama -v

在这里插入图片描述

部署Llama3

官网地址:library (ollama.com)

我们可以通过官网查看适合自己服务器GPU大小的模型,点击想要下载的模型之后右侧会有对应的代码,直接在服务器上面下载模型即可,模型的默认安装位置为 ”/usr/share/ollama/.ollama/models“。

部署open-webui

Open WebUI基于docker部署,docker的安装方法可以参考这篇知乎文章

执行以下docker命令来拉取并运行open-webui:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.nju.edu.cn/open-webui/open-webui:main

如果发现为开启的话,我们使用docker命令运行image即可:

docker run -d ghcr.nju.edu.cn/open-webui/open-webui

之后访问服务器的3000端口,就可以访问到我们的UI界面了。这样我们就部署好了大语言模型以及UI界面。

结语
  1. 我们注册的第一个用户默认是管理员,其他用户进行注册的时候需要经过管理员的同意,如果不想这么麻烦的话可以在UI界面设置—”默认用户角色“,设置为用户即可。

  1. 下载模型时可以直接在UI界面下载模型,这样节省时间(管理员);同时还可以设置UI界面的使用语言:

在这里插入图片描述

参考:

Linux快速部署大语言模型LLaMa3,Web可视化j交互(Ollama+Open Web UI)_ollama3 下载-CSDN博客

服务器部署开源大模型完整教程 Ollama+Gemma+open-webui - 哔哩哔哩 (bilibili.com)

<think>好的,我现在需要解决用户的问题:“如何将openweb-ui功能通过h5实现”。首先,我要理解用户的需求。用户之前问过关于如何将DeepSeek知识库接入H5开发,现在转向另一个工具OpenWeb-UI,想了解如何将其功能在H5中实现。可能需要明确OpenWeb-UI是什么,但根据名字推测,这可能是一个开源的Web用户界面框架或工具,类似一些UI组件库。但不确定具体是什么,可能需要进一步验证。 首先,我需要确认OpenWeb-UI的定义。可能用户指的是某个特定的开源项目,比如OpenWebUI,一个可扩展的、功能丰富的AI用户界面,支持本地运行语言模型。或者可能是指其他的UI框架。假设用户指的是类似聊天界面的AI工具,可能用于与大模型交互,类似于之前的DeepSeek知识库接入。 接下来,用户希望将OpenWeb-UI的功能通过H5实现。H5即HTML5,通常指移动端网页开发。用户可能想在自己的H5应用中集成类似OpenWeb-UI的界面和功能,比如聊天机器人、交互式UI组件等。 需要拆解OpenWeb-UI的主要功能。比如,假设它包含聊天界面、消息展示、输入框、历史记录、与后端API交互等。那么,如何在H5中实现这些功能?可能需要前端开发技术,如HTML、CSS、JavaScript,结合Ajax或WebSocket与后端通信。 然后,思考用户可能的实际应用场景。用户可能是一个开发者,需要在H5页面中嵌入一个类似OpenWeb-UI的界面,用于用户与AI模型的交互,比如客服系统、智能助手等。用户可能希望了解具体步骤,包括界面设计、前后端交互、API调用等。 接下来,需要给出步骤。首先,明确OpenWeb-UI的核心功能,然后分解实现步骤:UI组件开发、前后端通信、数据渲染、状态管理等。如果OpenWeb-UI本身是开源项目,可能需要查看其文档,了解如何集成或参考其实现方式。 考虑到用户之前的问题是关于接入知识库,可能用户现在希望在前端实现更复杂的UI交互,而不仅仅是调用API。因此,回答需要涵盖UI构建和功能集成两个方面。 需要确保回答结构清晰,分步骤说明,包括可能的代码示例,如使用Vue或React框架构建组件,如何处理用户输入,如何与后端API交互,如何渲染响应数据等。同时,考虑到H5的移动端适配,可能需要提到响应式设计。 另外,用户可能关心如何维护状态,比如对话历史、用户身份验证等,这些也需要在步骤中涉及。此外,安全性问题,如跨域请求、API密钥保护,是否需要后端代理,这些也需要提及。 可能还需要对比之前的DeepSeek接入,指出异同点,帮助用户理解两者的区别和相似之处,但用户没有明确提到,所以可能不需要深入。 最后,总结关键点和注意事项,比如性能优化、兼容性测试、用户体验等,确保用户能够全面了解实现过程。</think>将 **OpenWebUI** 的功能通过 H5(HTML5)实现,通常是指利用 Web 技术(HTML/CSS/JavaScript)构建类似 OpenWebUI 的交互界面,并集成 AI 模型的对话、推理等功能。以下是具体实现步骤和核心要点: --- ### **1. 明确 OpenWebUI 的核心功能** OpenWebUI开源项目(如支持本地 LLM 的交互界面),其典型功能包括: - **对话界面**:用户输入、消息展示(类似聊天应用)。 - **模型交互**:调用本地或云端 AI 模型(如 LLaMA、GPT)。 - **历史管理**:保存/加载对话记录。 - **扩展功能**:插件支持、多模型切换、Markdown 渲染等。 --- ### **2. H5 实现流程** #### **步骤 1:构建前端界面(HTML/CSS)** - **基础结构**:创建聊天容器、消息展示区域、输入框、发送按钮。 ```html <div id="chat-container"> <div id="messages"> <!-- 消息动态插入 --> </div> <div class="input-area"> <input type="text" id="user-input" placeholder="输入问题..." /> <button onclick="sendMessage()">发送</button> </div> </div> ``` - **样式设计**:模仿 OpenWebUI 的视觉效果(CSS 或框架如 Tailwind)。 ```css #messages { height: 400px; overflow-y: auto; border: 1px solid #ddd; padding: 10px; } .message { margin: 5px; padding: 8px; border-radius: 10px; max-width: 80%; } .user-message { background: #e3f2fd; } .bot-message { background: #f5f5f5; } ``` #### **步骤 2:实现交互逻辑(JavaScript)** - **消息渲染**:动态插入用户和 AI 的消息。 ```javascript function addMessage(text, isUser) { const messagesDiv = document.getElementById(&#39;messages&#39;); const message = document.createElement(&#39;div&#39;); message.className = `message ${isUser ? &#39;user-message&#39; : &#39;bot-message&#39;}`; message.textContent = text; messagesDiv.appendChild(message); messagesDiv.scrollTop = messagesDiv.scrollHeight; // 滚动到底部 } ``` - **发送请求**:调用 AI 模型接口(本地或云端)。 ```javascript async function sendMessage() { const input = document.getElementById(&#39;user-input&#39;); const userText = input.value.trim(); if (!userText) return; addMessage(userText, true); input.value = &#39;&#39;; // 调用后端 API(示例为本地模型接口) try { const response = await fetch(&#39;http://localhost:11434/api/generate&#39;, { method: &#39;POST&#39;, headers: { &#39;Content-Type&#39;: &#39;application/json&#39; }, body: JSON.stringify({ model: &#39;llama3&#39;, // 模型名称 prompt: userText, stream: false // 是否流式传输 }) }); const data = await response.json(); addMessage(data.response, false); } catch (error) { addMessage(&#39;请求失败,请重试。&#39;, false); } } ``` #### **步骤 3:集成模型后端** - **本地模型**:若使用本地部署的模型(如通过 Ollama),直接调用其 API。 - **云端模型**:若对接云端服务(如 OpenAI、DeepSeek),需通过后端代理(保护 API Key): ```javascript // 示例:Node.js 后端代理 const express = require(&#39;express&#39;); const axios = require(&#39;axios&#39;); const app = express(); app.use(express.json()); app.post(&#39;/api/chat&#39;, async (req, res) => { try { const { message } = req.body; const response = await axios.post(&#39;https://api.openai.com/v1/chat/completions&#39;, { model: &#39;gpt-4&#39;, messages: [{ role: &#39;user&#39;, content: message }] }, { headers: { Authorization: `Bearer YOUR_API_KEY` } }); res.json({ reply: response.data.choices[0].message.content }); } catch (error) { res.status(500).json({ error: &#39;请求失败&#39; }); } }); app.listen(3000, () => console.log(&#39;Server running on port 3000&#39;)); ``` #### **步骤 4:扩展功能** - **流式响应**:实现逐字输出(类似打字机效果)。 ```javascript // 修改 sendMessage 函数支持流式传输 async function sendMessage() { // ...(省略用户消息处理) const response = await fetch(&#39;http://localhost:11434/api/generate&#39;, { method: &#39;POST&#39;, headers: { &#39;Content-Type&#39;: &#39;application/json&#39; }, body: JSON.stringify({ model: &#39;llama3&#39;, prompt: userText, stream: true }) }); const reader = response.body.getReader(); const decoder = new TextDecoder(); let botMessage = &#39;&#39;; while (true) { const { done, value } = await reader.read(); if (done) break; const chunk = decoder.decode(value); const parsed = JSON.parse(chunk); botMessage += parsed.response; // 更新最后一条消息内容 messagesDiv.lastChild.textContent = botMessage; } } ``` - **历史记录**:使用 `localStorage` 或 IndexedDB 保存对话。 ```javascript // 保存历史 function saveHistory(messages) { localStorage.setItem(&#39;chatHistory&#39;, JSON.stringify(messages)); } // 加载历史 function loadHistory() { const history = localStorage.getItem(&#39;chatHistory&#39;); return history ? JSON.parse(history) : []; } ``` --- ### **3. 注意事项** 1. **跨域问题**:直接调用外部 API 需配置 CORS,建议通过后端代理。 2. **性能优化**:流式传输减少等待时间,避免阻塞 UI。 3. **移动端适配**:使用响应式设计(如 `viewport` 设置、触摸事件处理)。 4. **安全性**: - 用户输入需过滤 XSS 攻击(如 `DOMPurify` 库)。 - 敏感接口(如 API Key)必须通过后端转发,不可暴露在前端。 --- ### **4. 技术栈参考** - **前端框架**:Vue/React 简化组件管理(如消息列表渲染)。 - **样式库**:Tailwind CSS 或 Material-UI 加速开发。 - **构建工具**:Webpack/Vite 打包优化。 - **部署**:静态资源托管(GitHub Pages、Netlify)。 --- 通过以上步骤,即可在 H5 中实现类似 OpenWebUI 的核心功能。若需复刻完整功能(如插件系统、多模型切换),需根据具体需求扩展架构设计。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值