基于InceptionResNetV2模型的猫狗识别

本文介绍了如何使用TensorFlow的InceptionResNetV2模型对猫狗图像进行分类,通过数据预处理、模型训练、F1分数评估,并展示了如何利用oneAPI进行模型优化以提升推理效率。实验结果显示,优化后的模型在测试集上的F1分数显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、项目简介

1、问题概述

问题描述:在问题中,你将面一个典的机器学分类挑——猫狗大。你的任是建立一个分类模型,能够准确地区分像中是猫是狗

期解决方案:

你的目标是通过训练一个机器学习模型,使其在给定一张图像时能够准确地预测图像中是猫还是狗。模型应该能够推广到未见过的图像,并在测试数据上表现良好。期待您将其部署到模的生产环境中——里推理时间和二分类准确度(F1分数)将作为评分的主要依据

2、数据描述以及来源

本实验一共有两个数据集合,都在data目录下,整个数据集分为训练集和测试集,分别是test_dir与train_dir,其内容都是一些大小不等的jpg照片格式。其中train_dir有 25000 张图片,其格式为cat.xxxx.jpg与dog.xxxx.jpg,xxxx表示的是数据标号。猫狗各 12500 张。 而测试集tets_dir有张图片,其格式与train_dir的数据格式一样

数据集:

链接:百度网盘 请输入提取码

提取码:jc34

3、部分原始数据展示

猫示例图片展示
狗图片示意展示

4、运行平台

由于需要用到oneApI组件,因此本实验是在intel的devCloud平台下运行的,采用的框架是TensorFlow。

二、InceptionResNetV2结构设计

1、InceptionResNetV2的加载


CFG = dict(
    seed = 77,
    batch_size = 20,
    img_size
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值