一、项目简介
1、问题概述
问题描述:在这个问题中,你将面临一个经典的机器学习分类挑战——猫狗大战。你的任务是建立一个分类模型,能够准确地区分图像中是猫还是狗。
预期解决方案:
你的目标是通过训练一个机器学习模型,使其在给定一张图像时能够准确地预测图像中是猫还是狗。模型应该能够推广到未见过的图像,并在测试数据上表现良好。我们期待您将其部署到模拟的生产环境中——这里推理时间和二分类准确度(F1分数)将作为评分的主要依据。
2、数据描述以及来源
本实验一共有两个数据集合,都在data目录下,整个数据集分为训练集和测试集,分别是test_dir与train_dir,其内容都是一些大小不等的jpg照片格式。其中train_dir有 25000 张图片,其格式为cat.xxxx.jpg与dog.xxxx.jpg,xxxx表示的是数据标号。猫狗各 12500 张。 而测试集tets_dir有张图片,其格式与train_dir的数据格式一样
数据集:
链接:百度网盘 请输入提取码
提取码:jc34
3、部分原始数据展示


4、运行平台
由于需要用到oneApI组件,因此本实验是在intel的devCloud平台下运行的,采用的框架是TensorFlow。
二、InceptionResNetV2结构设计
1、InceptionResNetV2的加载
CFG = dict(
seed = 77,
batch_size = 20,
img_size