Facenet是谷歌研发的人脸识别系统,该系统是基于百万级人脸数据训练的深度卷积神经网络,可以将人脸图像embedding(映射)成128维度的特征向量。以该向量为特征,采用knn或者svm等机器学习方法实现人脸识别。
CASIA-WebFace数据集预训练的Facenet模型,LFW测试集准确率为0.98模型。
1.对图像质量(像素值)不敏感,即使80*80像素的图片生成的结果也可以接受。
2. embedding(映射)成128维度的特征向量。inception_resnet_v2
embedding_size 512
流程1.用户注册,提取多次。
2. 比对:多底库对比。
faceNet不采用landmark直接用CNN来学对齐的那套(face detection->feature extraction)
其他走face detection->face alignment ->feature extraction。
- FaceNet并没有像DeepFace和DeepID那样需要对齐。
- FaceNet得到最终表示后不用像DeepID那样需要再训练模型进行分类,直接计算距离就好了,简单而有效。
增加block + 增加 embedding 以及 fullyconnect ?
虹软?