详情参考:(16条消息) 李宏毅2020机器学习课程笔记(一)_⚡-CSDN博客
https://andyguo.blog.csdn.net/article/list/4
1.机器学习概念:
- 定义模型集合/函数集合。
- 定义损失函数(LOSS)来评价模型/函数好坏。
- 最佳函数
梯度下降(Gradient Descent ):
回归问题的损失函数是凸函数(convex),意味着一定会找到全局最优解。但是,其它的机器学习问题中,多个参数的梯度下降可能会陷入局部最优解。
过拟合、欠拟合的问题及解决方法:
过拟合时,使用正则化。
正则化的作用是降低模型的泛化误差。
回归问题的机器学习三步骤:
1.定义模型集合:f=w⋅x+b
2.定义损失函数(LOSS)来评价模型好坏
3.选择最佳模型
2.偏差(bias)和方差
(详情参考)
【李宏毅机器学习CP5-8】(task3上)误差分析+梯度下降优化_明确目标,勿欺骗自己,小白冲冲冲-CSDN博客
偏差:平均模型(对用所有训练集得到的所有模型求平均值)与真实模型之间的差距
方差:用所有训练集得到的所有模型本身也各不相同,他们的变动水平即方差
首先 Error = Bias + VarianceError反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性
(举一个例子,一次打靶实验,目标是为了打到10环,但是实际上只打到了7环,那么这里面的Error就是3。具体分析打到7环的原因,可能有两方面:一是瞄准出了问题,比如实际上射击瞄准的是9环而不是10环;二是枪本身的稳定性有问题,虽然瞄准的是9环,但是只打到了7环。那么在上面一次射击实验中,Bias就是1,反应的是模型期望与真实目标的差距,而在这次试验中,由于Variance所带来的误差就是2,即虽然瞄准的是9环,但由于本身模型缺乏稳定性,造成了实际结果与模型期望之间的差距)
1)评估x的偏差bias
假设 x 的平均值是 μ ,方差为
评估平均值要怎么做呢?
2)评估x的方差variable
3)方差VS偏差
欠拟合(underfitting):误差来源于bias——模型不能很好地拟合训练数据
过拟合(overfitting):误差来源于variance——模型拟合了训练数据,但在测试数据上有很大误差。
三.训练集(鞍点,驻点)
注1:将训练数据分为测试集和验证集。
做实验、发表论文时所谓的测试集,实际上是一个public testing set,而真正的测试集是一个private testing set,是一个谁也不知道的东西(我们不知道后人会输入什么数据到模型中),因此,我们不应该以public testing set作为选择模型的标准,而是应该以validation的结果来选择最好的模型。
注2:用validation选好模型后,可以把测试集和验证集一起作为训练数据,再对模型进行一次训练。但是!千万不要在看到public testing set的结果后,再想着去调整训练好的模型,这样的调整是无意义的。
Optimization with Batch
实际上在算微分的时候,并不是真的对所有 Data 算出来的 L 作微分