机器学习笔记(1)

详情参考:(16条消息) 李宏毅2020机器学习课程笔记(一)_⚡-CSDN博客

https://andyguo.blog.csdn.net/article/list/4

李宏毅2020机器学习课程笔记(一)_⚡-CSDN博客

1.机器学习概念:

  1. 定义模型集合/函数集合。
  2. 定义损失函数(LOSS)来评价模型/函数好坏。
  3. 最佳函数

梯度下降(Gradient Descent )

回归问题的损失函数是凸函数(convex),意味着一定会找到全局最优解。但是,其它的机器学习问题中,多个参数的梯度下降可能会陷入局部最优解。

过拟合、欠拟合的问题及解决方法:

过拟合时,使用正则化。
正则化的作用是降低模型的泛化误差。

回归问题的机器学习三步骤:

1.定义模型集合:f=w⋅x+b

2.定义损失函数(LOSS)来评价模型好坏

3.选择最佳模型

image-20210320190545539

 

image-20210320190621261

 

image-20210320195929935

 

 2.偏差(bias)和方差

(详情参考)

【李宏毅机器学习CP5-8】(task3上)误差分析+梯度下降优化_明确目标,勿欺骗自己,小白冲冲冲-CSDN博客

偏差:平均模型(对用所有训练集得到的所有模型求平均值)与真实模型之间的差距
方差:用所有训练集得到的所有模型本身也各不相同,他们的变动水平即方差

首先 Error = Bias + VarianceError反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性

(举一个例子,一次打靶实验,目标是为了打到10环,但是实际上只打到了7环,那么这里面的Error就是3。具体分析打到7环的原因,可能有两方面:一是瞄准出了问题,比如实际上射击瞄准的是9环而不是10环;二是枪本身的稳定性有问题,虽然瞄准的是9环,但是只打到了7环。那么在上面一次射击实验中,Bias就是1,反应的是模型期望与真实目标的差距,而在这次试验中,由于Variance所带来的误差就是2,即虽然瞄准的是9环,但由于本身模型缺乏稳定性,造成了实际结果与模型期望之间的差距
 

1)评估x的偏差bias

假设 x  的平均值是 μ ,方差为 \sigma ^{2}

评估平均值要怎么做呢?


 

 2)评估x的方差variable

3)方差VS偏差

欠拟合(underfitting):误差来源于bias——模型不能很好地拟合训练数据

过拟合(overfitting):误差来源于variance——模型拟合了训练数据,但在测试数据上有很大误差。

三.训练集(鞍点,驻点)

 注1:将训练数据分为测试集和验证集。

做实验、发表论文时所谓的测试集,实际上是一个public testing set,而真正的测试集是一个private testing set,是一个谁也不知道的东西(我们不知道后人会输入什么数据到模型中),因此,我们不应该以public testing set作为选择模型的标准,而是应该以validation的结果来选择最好的模型。
注2:用validation选好模型后,可以把测试集和验证集一起作为训练数据,再对模型进行一次训练。但是!千万不要在看到public testing set的结果后,再想着去调整训练好的模型,这样的调整是无意义的。

Optimization with Batch

实际上在算微分的时候,并不是真的对所有 Data 算出来的 L 作微分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值