高等数学考研笔记(七)

高等数学考研笔记(七):无穷级数

  • 无穷级数相关概念:
    • 收敛: lim ⁡ ∑ a n \lim \sum a_n liman存在;

    • 发散: lim ⁡ ∑ a n \lim \sum a_n liman不存在;

    • 绝对收敛: lim ⁡ ∑ ∣ a n ∣ \lim \sum \mid a_n\mid liman存在;绝对收敛级数一定收敛;

    • 条件收敛: lim ⁡ ∑ ∣ a n ∣ \lim \sum \mid a_n\mid liman不存在,且 lim ⁡ ∑ a n \lim \sum a_n liman存在;

    • 一致收敛:设函数项级数 ∑ u n ( x ) \sum u_n(x) un(x),对于任意给定的正数 ε \varepsilon ε,都存在一个只依赖于 ε \varepsilon ε的自然数N,使得当n>N时,对于区间 I I I上的一切x,都有:
      ∣ r n ( x ) ∣ = ∣ S ( x ) − S n ( x ) ∣ < ε |r_n(x)| = |S(x)-S_n(x)| < \varepsilon rn(x)=S(x)Sn(x)<ε
      则称函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在区间I上一致收敛于 S ( x ) S(x) S(x)

    • 收敛区间:若幂级数的收敛半径是 R R R,则 ( − R , R ) (-R,R) (R,R)称该幂级数的收敛区间;

    • 收敛域:若幂级数的收敛区间为 ( − R , R ) (-R,R) (R,R),考察边界点的收敛性,则该幂级数的收敛域为:

      • [ − R , R ) [-R,R) [R,R),若 x = − R x=-R x=R处收敛, x = R x=R x=R处发散;
      • ( − R , R ] (-R,R] (R,R],若 x = R x=R x=R处收敛, x = − R x=-R x=R处发散;
      • [ − R , R ] [-R,R] [R,R],若 x = R , x = − R x=R,x=-R x=R,x=R处均收敛;
      • ( − R , R ) (-R,R) (R,R),若 x = R , x = − R x=R,x=-R x=R,x=R处发散;
  • 收敛级数性质:
    • 收敛级数的通项极限为0;

    • 正项收敛级数的子级数一定收敛;

    • 收敛级数具有可结合性;

    • 绝对收敛级数具有可更序性;

    • 条件收敛的级数的所有正项或所有负项构成的级数一定发散;

    • 两收敛级数的和为收敛级数;一收敛级数和一发散级数的和为发散级数;两个发散级数的和的级数的敛散性不定;

    • 两绝对收敛级数的和为绝对收敛级数;一绝对收敛级数和一条件收敛级数的和为条件收敛级数;两条件收敛级数的和可能是绝对收敛级数也可能是条件收敛级数;

    • 若正项级数 ∑ a n \sum a_n an收敛,则: ∑ a n 2 \sum a_n^2 an2收敛,反之不然;若 ∑ a n 2 \sum a_n^2 an2收敛,则正项级数 ∑ a n / n \sum a_n/n an/n收敛;

    • 对于一致收敛(幂级数在收敛域内一致收敛)的函数级数 ∑ u n ( x ) ∑u_n(x) un(x)

      • u n ( x ) u_n(x) un(x)连续,则和函数连续;
      • 和函数可以逐项求导;
      • 和函数可以逐项积分;
    • 设幂级数 ∑ n = 0 a n x n \sum\limits_{n=0} a_nx^n n=0anxn的收敛半径是 R R R,和函数为 S ( x ) S(x) S(x),则:

      • 幂级数 ∑ n = 0 a n x 2 n \sum\limits_{n=0} a_nx^{2n} n=0anx2n ∑ n = 0 a n x 2 n − 1 \sum\limits_{n=0} a_nx^{2n-1} n=0anx2n1的收敛半径为 R \sqrt{R} R

      • 奇偶子列幂级数必定收敛,故收敛半径 R ’ ≥ R R’\ge R RR

      • S ( x ) S(x) S(x) ( − R , R ) (-R,R) (R,R)上连续;

      • S ( x ) S(x) S(x) ( − R , R ) (-R,R) (R,R)上可导,且可逐项求导,即 S ′ ( x ) = ∑ n = 1 n a n x n − 1 S'(x) = \sum\limits_{n=1}na_nx^{n-1} S(x)=n=1nanxn1

      • S ( x ) S(x) S(x) ( − R , R ) (-R,R) (R,R)上可积,且可逐项积分,即 ∫ 0 x S ( t ) d t = ∑ n = 0 ∫ 0 x a n t n d t = ∑ n = 0 a n n + 1 x n + 1 \int_0^xS(t)dt = \sum\limits_{n=0}\int_0^xa_nt^ndt = \sum\limits_{n=0}\cfrac{a_n}{n+1}x^{n+1} 0xS(t)dt=n=00xantndt=n=0n+1anxn+1

        ⇒ \Rightarrow ∫ 0 x S ( t ) d t \int_0^xS(t)dt 0xS(t)dt在R处左连续,且 ∑ n = 0 a n n + 1 R n + 1 \sum\limits_{n=0}\cfrac{a_n}{n+1}R^{n+1} n=0n+1anRn+1收敛,则 S ( x ) S(x) S(x) ( − R , R ] (-R,R] (R,R]上可积; x = − R x=-R x=R时同理

      • a n = S ( n ) ( 0 ) n ! a_n = \cfrac{S^{(n)}(0)}{n!} an=n!S(n)(0) 特 别 地 , S ( 0 ) = a 0 特别地,S(0) = a_0 S(0)=a0

  • 数项级数敛散性判定定理:
    • 任意级数:

      • 部分和 S n S_n Sn极限存在(充要,定义);

      • 柯西收敛原理(充要):级数 ∑ u n \sum u_n un收敛,当且仅当对于任意给定的正数 ε \varepsilon ε,总存在N,使得当n>N时,对于任意正整数p,都有:
        ∣ u n + 1 + u n + 2 + . . + u n + p ∣ < ε |u_{n+1}+u_{n+2}+..+u_{n+p}|<\varepsilon un+1+un+2+..+un+p<ε

      • 通项判别法(必要):收敛级数的通项 u n u_n un趋近于0;

      • 阿贝尔判别法(充分):若满足:① ∑ b n \sum b_n bn收敛;② { a n } \{a_n\} {an}单调有界,则:级数 ∑ a n b n \sum a_n b_n anbn收敛;

      • 狄利克莱判别法(充分):若满足:① ∑ b n \sum b_n bn有界;② { a n } \{a_n\} {an}单调趋近于零,则:级数 ∑ a n b n \sum a_n b_n anbn收敛;

    • 正项级数:

      • 部分和 S n S_n Sn有上界(充要);

      • 比较定理(充分):

        • lim ⁡ u n v n = ρ ( 0 ≤ ρ < + ∞ ) \lim \cfrac{u_n}{v_n} = \rho(0\le \rho< +\infty) limvnun=ρ(0ρ<+),且级数 ∑ v n \sum v_n vn收敛,则 ∑ u n \sum u_n un收敛;
        • lim ⁡ u n v n = ρ ( 0 < ρ ≤ + ∞ ) \lim \cfrac{u_n}{v_n} = \rho(0< \rho\le +\infty) limvnun=ρ(0<ρ+),且级数 ∑ v n \sum v_n vn发散,则 ∑ u n \sum u_n un发散;
        • 常用于比较的已知敛散性的正项级数:
          • p p p级数: ∑ n = 1 ∞ 1 n p { 收 敛 , p > 1 发 散 , p ≤ 1 \sum\limits_{n=1}^{\infty}\cfrac{1}{n^p} \begin{cases}收敛,&p>1\\发散,&p\le1 \end{cases} n=1np1{,,p>1p1
          • 等比级数: ∑ n = 1 ∞ a q n { 收 敛 , 0 < q < 1 发 散 , q > 1 , a > 0 \sum\limits_{n=1}^{\infty} aq^n \begin{cases}收敛,&0<q<1\\发散,&q>1,a>0 \end{cases} n=1aqn{,,0<q<1q>1,a>0
          • 对数 p p p级数: ∑ n = 2 ∞ 1 l n p n 发 散 , p > 0 \sum\limits_{n=2}^{\infty}\cfrac{1}{ln^pn}发散, p> 0 n=2lnpn1,p>0
          • 幂对数 p p p级数: ∑ n = 2 ∞ 1 n p l n q n { 收 敛 , p > 1 或 ( p = 1 且 q > 1 ) 发 散 , p < 1 或 ( p = 1 且 q ≤ 1 ) \sum\limits_{n=2}^{\infty}\cfrac{1}{n^pln^qn}\begin{cases}收敛,&p>1 或 (p=1且q>1)\\发散,&p<1或(p=1且q\le 1) \end{cases} n=2nplnqn1{,,p>1(p=1q>1)p<1(p=1q1)
      • 柯西判别法(充分):令 lim ⁡ u n n = ρ \lim \sqrt[n]{u_n} = \rho limnun =ρ

        • ρ < 1 \rho < 1 ρ<1,级数 ∑ u n \sum u_n un收敛;
        • ρ > 1 或 ρ = + ∞ \rho > 1或\rho = +\infty ρ>1ρ=+,级数 ∑ u n \sum u_n un发散;
        • ρ = 1 \rho = 1 ρ=1,无法判定级数 ∑ u n \sum u_n un的敛散性;
      • 达朗贝尔判别法(充分):令 lim ⁡ u u + 1 u n = ρ \lim \cfrac{u_{u+1}}{u_n} = \rho limunuu+1=ρ

        • ρ < 1 \rho < 1 ρ<1,级数 ∑ u n \sum u_n un收敛;
        • ρ > 1 或 ρ = + ∞ \rho > 1或\rho = +\infty ρ>1ρ=+,级数 ∑ u n \sum u_n un发散;
        • ρ = 1 \rho = 1 ρ=1,无法判定级数 ∑ u n \sum u_n un的敛散性;
      • 柯西积分判别法(充分):若存在一个单调递减的正值函数 f ( x ) f(x) f(x),使得: u n = f ( n ) u_n=f(n) un=f(n)

        则:级数 ∑ u n \sum u_n un和广义积分 ∫ 1 + ∞ f ( x ) d x \int_1^{+\infty}f(x)dx 1+f(x)dx的敛散性相同;

      • 库默尔判别法(充分):设 Σ 1 c n Σ\cfrac{1}{c_n} Σcn1是一个发散的正项级数,令:

        K n = c n ∗ u n u n + 1 − c n + 1 , K = lim ⁡ K n K_n = c_n*\cfrac{u_n}{u_{n+1}} - c_{n+1}, K = \lim K_n Kn=cnun+1uncn+1,K=limKn

        • K > 0 K>0 K>0,级数 ∑ u n \sum u_n un收敛;
        • K < 0 K<0 K<0,级数 ∑ u n \sum u_n un发散;
        • K = 0 K=0 K=0,无法判定 ∑ u n \sum u_n un的敛散性;
      • 拉阿伯判别法(充分):令库默尔判定法中的 c n = n c_n=n cn=n,则可令:

        R n = n ( u n u n + 1 − 1 ) , R = lim ⁡ R n R_n = n(\frac{u_n}{u_{n+1} }- 1), R = \lim R_n Rn=n(un+1un1),R=limRn

        • R > 0 R>0 R>0,级数 ∑ u n \sum u_n un收敛;
        • R < 0 R<0 R<0,级数 ∑ u n \sum u_n un发散;
        • R = 0 R=0 R=0,无法判定 ∑ u n \sum u_n un的敛散性;
      • 贝朗特判别法(充分):令库默尔中的 c n = n ln ⁡ n c_n = n\ln n cn=nlnn则,可令:

        B n = ln ⁡ n [ n ( u n u n + 1 − 1 ) − 1 ] B_n =\ln n[n(\cfrac{u_n}{u_{n+1} }- 1)-1] Bn=lnn[n(un+1un1)1] , B = lim ⁡ B n ,B = \lim B_n ,B=limBn

        • B > 0 B>0 B>0,级数 ∑ u n \sum u_n un收敛;
        • B < 0 B<0 B<0,级数 ∑ u n \sum u_n un发散;
        • B = 0 B=0 B=0,无法判定 ∑ u n \sum u_n un的敛散性;
      • 高斯判别法(充分):若 u n u n + 1 = λ + μ n + c n n 2 \cfrac{u_n}{u_{n+1}} = λ+\cfrac{μ}{n} + \cfrac{c_n}{n^2} un+1un=λ+nμ+n2cn, 其中λ和μ都是常数,而 c n c_n cn是有界量,则:

        • λ > 1 λ>1 λ>1,级数收敛;
        • λ < 1 λ<1 λ<1,级数发散;
        • λ = 1 λ=1 λ=1,若 μ > 1 μ>1 μ>1级数收敛, μ ≤ 1 μ\le1 μ1时级数发散;
    • 交错级数:

      • 莱布尼兹定理(充分):若交错级数 ∑ ( − 1 ) n + 1 u n \sum (-1)^{n+1}u_n (1)n+1un的一般项 u n u_n un单调趋近于零,则级数收敛,且其余项 r n r_n rn ( − 1 ) n + 2 u n + 1 (-1)^{n+2}u_{n+1} (1)n+2un+1的符号相同,且 ∣ r n ∣ ≤ u n + 1 |r_n|\le u_{n+1} rnun+1
  • 函数项级数收敛定理:
    • 任意级数:

      • 魏尔斯特拉斯判别法(充分):如果函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)满足: ∣ u n ( x ) ∣ ≤ a n |u_n(x)|\le a_n un(x)an,且正项级数 ∑ a n \sum a_n an收敛,则 ∑ u n ( x ) \sum u_n(x) un(x)在区间I上一致收敛;
    • 幂级数:

      • 阿贝尔定理(充分):

        • 若幂级数 ∑ a n x n \sum a_nx^n anxn在点 x 0 ≠ 0 x_0\neq 0 x0=0收敛,则对满足 ∣ x ∣ < ∣ x 0 ∣ |x|<|x_0| x<x0的一切x,幂级数 ∑ a n x n \sum a_nx^n anxn绝对收敛;
        • 若幂级数 ∑ a n x n \sum a_nx^n anxn在点 x 0 ≠ 0 x_0\neq 0 x0=0处发散,则对满足 ∣ x ∣ > ∣ x 0 ∣ |x|>|x_0| x>x0的一切x,幂级数 ∑ a n x n \sum a_nx^n anxn发散;
        • 若幂级数 ∑ a n ( x − x 0 ) n \sum a_n(x-x_0)^n an(xx0)n x = b x=b x=b处条件收敛,则 x = b x=b x=b为该幂级数收敛区间的一个端点;
      • 柯西-阿达马定理(充分):对于幂级数 ∑ a n x n \sum a_nx^n anxn,令 lim ⁡ ∣ a n + 1 a n ∣ = lim ⁡ ∣ a n ∣ n = l \lim |\cfrac{a_{n+1}}{a_n}| =\lim \sqrt[n]{|a_n|}= l limanan+1=limnan =l

        则其收敛半径为:
        R = { 1 l , 0 < l < + ∞ + ∞ , l = 0 0 , l = + ∞ R = \begin{cases} \cfrac{1}{l}, &0<l<+\infty\\ +\infty,&l=0\\ 0,&l=+\infty \end{cases} R=l1,+,0,0<l<+l=0l=+

      • ∑ a n x n \sum a_nx^n anxn的收敛半径为 R a R_a Ra ∑ b n x n \sum b_nx^n bnxn的收敛半径为 R b R_b Rb,则 ∑ ( a n ± b n ) x n \sum (a_n\pm b_n)x^n (an±bn)xn的收敛半径:
        R { = m i n ( R a , R b ) , R a ≠ R b ≥ m i n ( R a , R b ) , R a = R b R\begin{cases}=min(R_a,R_b),&R_a\neq R_b\\\ge min(R_a,R_b),&R_a= R_b \end{cases} R{=min(Ra,Rb),min(Ra,Rb),Ra=RbRa=Rb

    • 泰勒级数:

      • 余项判别法(充要):若函数 f ( x ) f(x) f(x) x 0 x_0 x0处展开的泰勒级数的余项 lim ⁡ R n ( x ) = 0 \lim R_n(x)=0 limRn(x)=0,则该泰勒级数在 x 0 x_0 x0处收敛于 f ( x ) f(x) f(x)
  • 无穷限广义积分收敛定理:
    • 柯西收敛原理(充要):广义积分 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛,当且仅当:对于任意给定的正数 ε \varepsilon ε,存在 A > a A>a A>a,使得当 b 1 , a 1 > A b_1,a_1>A b1,a1>A时,恒有:
      ∣ ∫ a 1 b 1 f ( x ) d x ∣ < ε |\int_{a_1}^{b_1}f(x)dx|<\varepsilon a1b1f(x)dx<ε

    • 比较判别法(充分):设 f ( x ) , g ( x ) 在 [ a , + ∞ ] f(x),g(x)在[a,+\infty] f(x),g(x)[a,+]上为正值函数,且在任意区间 [ a , b ] [a,b] [a,b]上可积,令:
      lim ⁡ x → + ∞ f ( x ) g ( x ) = ρ \lim\limits_{x\rightarrow +\infty}\cfrac{f(x)}{g(x)}=\rho x+limg(x)f(x)=ρ
      则有:

      • 0 ≤ ρ < + ∞ 0\le \rho <+\infty 0ρ<+,且 ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx收敛,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛;
      • 0 < ρ ≤ + ∞ 0< \rho \le+\infty 0<ρ+,且 ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx发散,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx发散;
    • 柯西判别法(充分):设 f ( x ) 在 [ a , + ∞ ] f(x)在[a,+\infty] f(x)[a,+]上为正值函数,令:
      lim ⁡ x → + ∞ x p f ( x ) = ρ \lim\limits_{x\rightarrow +\infty}x^pf(x) = \rho x+limxpf(x)=ρ
      即比较判别法中: g ( x ) = 1 x p g(x) = \cfrac{1}{x^p} g(x)=xp1

      由于: g ( x ) = 1 x p { 收 敛 , p > 1 发 散 , p ≤ 1 g(x) = \cfrac{1}{x^p} \begin{cases}收敛,& p>1\\发散,& p\le 1 \end{cases} g(x)=xp1{,,p>1p1

      则有:

      • 0 ≤ ρ < + ∞ 0\le \rho <+\infty 0ρ<+,且 p > 1 p>1 p>1,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛;
      • 0 < ρ ≤ + ∞ 0< \rho \le+\infty 0<ρ+,且 p ≤ 1 p\le 1 p1,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx发散;

      ⇒ \Rightarrow 扩展:另外常用的一个 g ( x ) : ∫ a + ∞ 1 x ( l n x ) p { 收 敛 , p > 1 发 散 , p ≤ 1 g(x):\int_a^{+\infty}\cfrac{1}{x(lnx)^p}\begin{cases}收敛,& p>1 \\ 发散, & p\le 1 \end{cases} g(x):a+x(lnx)p1{,,p>1p1

    • 阿贝尔判别法(充分):若满足:① ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx收敛;② f ( x ) f(x) f(x)单调有界,则:

      级数 ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)dx a+f(x)g(x)dx收敛;

    • 狄利克莱判别法(充分):若满足:① ∀ A ≥ a , ∫ a A g ( x ) d x \forall A\ge a,\int_a^{A}g(x)dx Aa,aAg(x)dx有界;② f ( x ) f(x) f(x)单调趋近于零,则:

      级数 ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)dx a+f(x)g(x)dx收敛;

  • 无界函数广义积分收敛定理:(默认以b为奇点)
    • 柯西收敛原理(充要):广义积分 ∫ a b f ( x ) d x \int_a^{b}f(x)dx abf(x)dx收敛,当且仅当:对于任意给定的正数 ε \varepsilon ε,存在 δ > a \delta>a δ>a,使得当 0 < η 2 < η 1 < δ 0<\eta_2<\eta_1<\delta 0<η2<η1<δ时,恒有:
      ∣ ∫ b − η 1 b − η 2 f ( x ) d x ∣ < ε |\int_{b-\eta_1}^{b-\eta_2}f(x)dx|<\varepsilon bη1bη2f(x)dx<ε

    • 比较判别法(充分):设 f ( x ) , g ( x ) 在 [ a , b ) f(x),g(x)在[a,b) f(x),g(x)[a,b)上为正值函数,令:
      lim ⁡ x → b − f ( x ) g ( x ) = ρ \lim\limits_{x\rightarrow b^-}\cfrac{f(x)}{g(x)}=\rho xblimg(x)f(x)=ρ
      则有:

      • 0 ≤ ρ < + ∞ 0\le \rho <+\infty 0ρ<+,且 ∫ a b g ( x ) d x \int_a^{b}g(x)dx abg(x)dx收敛,则 ∫ a b f ( x ) d x \int_a^{b}f(x)dx abf(x)dx收敛;
      • 0 < ρ ≤ + ∞ 0< \rho \le+\infty 0<ρ+,且 ∫ a b g ( x ) d x \int_a^{b}g(x)dx abg(x)dx发散,则 ∫ a b f ( x ) d x \int_a^{b}f(x)dx abf(x)dx发散;
    • 柯西判别法(充分):设 f ( x ) 在 [ a , b ) f(x)在[a,b) f(x)[a,b)上为正值函数,令:
      { lim ⁡ x → b − ( b − x ) p f ( x ) = ρ , b 为 奇 点 lim ⁡ x → a + ( x − a ) p f ( x ) = ρ , a 为 奇 点 \begin{cases} \lim\limits_{x\rightarrow b^-}(b-x)^pf(x) = \rho,&b为奇点\\ \lim\limits_{x\rightarrow a^+}(x-a)^pf(x) = \rho,&a为奇点\\ \end{cases} xblim(bx)pf(x)=ρ,xa+lim(xa)pf(x)=ρ,ba
      即比较判别法中: g ( x ) = 1 ( b − x ) p 或 1 ( x − a ) p g(x) = \cfrac{1}{(b-x)^p}或\cfrac{1}{(x-a)^p} g(x)=(bx)p1(xa)p1

      由于: ∫ a + b 1 ( x − a ) p , ∫ a b − 1 ( b − x ) p 均 : { 收 敛 , 0 < p < 1 发 散 , p ≥ 1 \int_{a^+}^b\cfrac{1}{(x-a)^p},\int_{a}^{b^-}\cfrac{1}{(b-x)^p}均:\begin{cases}收敛,&0<p< 1\\发散,& p\ge 1 \end{cases} a+b(xa)p1,ab(bx)p1:{,,0<p<1p1

      则有:

      • 0 ≤ ρ < + ∞ 0\le \rho <+\infty 0ρ<+,且 0 < p < 1 0<p<1 0<p<1,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛;
      • 0 < ρ ≤ + ∞ 0< \rho \le+\infty 0<ρ+,且 p ≥ 1 p\ge 1 p1,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx发散;

      ⇒ \Rightarrow 扩展:常用的结论: ∫ 0 1 l n x x p { 收 敛 , p < 1 发 散 , p ≥ 1 \int_0^1\cfrac{lnx}{x^p}\begin{cases}收敛,& p<1\\发散,& p\ge 1 \end{cases} 01xplnx{,,p<1p1

    • 阿贝尔判别法(充分):若满足:① ∫ a b g ( x ) d x \int_a^{b}g(x)dx abg(x)dx收敛;② f ( x ) f(x) f(x)单调有界,则:

      级数 ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)dx a+f(x)g(x)dx收敛;

    • 狄利克莱判别法(充分):若满足:① ∀ a ≤ A < b , ∫ a A g ( x ) d x \forall a\le A<b,\int_a^{A}g(x)dx aA<b,aAg(x)dx有界;② f ( x ) f(x) f(x)单调且 lim ⁡ x → b − f ( x ) = 0 \lim\limits_{x\rightarrow b^-}f(x)=0 xblimf(x)=0,则:级数 ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)dx a+f(x)g(x)dx收敛;

  • 傅里叶级数:
    • 狄利克莱收敛定理:设周期函数 f ( x ) f(x) f(x)的周期为 2 l 2l 2l,若满足:

      f ( x ) f(x) f(x) [ − l , l ] [-l,l] [l,l]上连续或只有有限个第一类间断点

      f ( x ) f(x) f(x) [ − l , l ] [-l,l] [l,l]上只有有限个严格极值点

      f ( x ) f(x) f(x)的傅里叶级数收敛;

    • 若周期为 2 l 2l 2l的周期函数 f ( x ) f(x) f(x)满足狄利克莱收敛定理,则其傅里叶级数为:

a 0 2 + ∑ n = 1 + ∞ ( a n c o s n π x l + b n s i n n π x l ) = { f ( x ) , x 为 f ( x ) 的 连 续 点 f ( x + ) + f ( x − ) 2 , x 为 f ( x ) 的 间 断 点 \cfrac{a_0}{2}+\sum\limits_{n=1}^{+\infty}(a_ncos\cfrac{n\pi x}{l}+b_nsin\cfrac{n\pi x}{l}) = \begin{cases} f(x),&x为f(x)的连续点\\ \cfrac{f(x^+)+f(x^-)}{2},&x为f(x)的间断点 \end{cases} 2a0+n=1+(ancoslnπx+bnsinlnπx)=f(x),2f(x+)+f(x),xf(x)xf(x)

​ 其中:
a n = 1 l ∫ − l l f ( x ) c o s n π x l d x ,   n = 0 , 1 , 2 , . . b n = 1 l ∫ − l l f ( x ) s i n n π x l d x ,   n = 1 , 2 , . . a_n = \cfrac{1}{l}\int_{-l}^lf(x)cos\cfrac{n\pi x}{l}dx,\space n=0,1,2,..\\ b_n = \cfrac{1}{l}\int_{-l}^lf(x)sin\cfrac{n\pi x}{l}dx,\space n=1,2,.. an=l1llf(x)coslnπxdx, n=0,1,2,..bn=l1llf(x)sinlnπxdx, n=1,2,..

  • 若周期为 2 l 2l 2l的周期函数 f ( x ) f(x) f(x)是奇函数,则其傅里叶级数为:

∑ n = 1 + ∞ b n s i n n π x l = { f ( x ) , x 为 f ( x ) 的 连 续 点 f ( x + ) + f ( x − ) 2 , x 为 f ( x ) 的 间 断 点 \sum\limits_{n=1}^{+\infty}b_nsin\cfrac{n\pi x}{l} = \begin{cases} f(x),&x为f(x)的连续点\\ \cfrac{f(x^+)+f(x^-)}{2},&x为f(x)的间断点 \end{cases} n=1+bnsinlnπx=f(x),2f(x+)+f(x),xf(x)xf(x)

​ 其中:
b n = 2 l ∫ 0 l f ( x ) s i n n π x l d x ,   n = 1 , 2 , . . b_n = \cfrac{2}{l}\int_{0}^lf(x)sin\cfrac{n\pi x}{l}dx,\space n=1,2,.. bn=l20lf(x)sinlnπxdx, n=1,2,..

  • 若周期为 2 l 2l 2l的周期函数 f ( x ) f(x) f(x)是偶函数,则其傅里叶级数为:

a 0 2 + ∑ n = 1 + ∞ a n c o s n π x l = { f ( x ) , x 为 f ( x ) 的 连 续 点 f ( x + ) + f ( x − ) 2 , x 为 f ( x ) 的 间 断 点 \cfrac{a_0}{2}+\sum\limits_{n=1}^{+\infty}a_ncos\cfrac{n\pi x}{l} = \begin{cases} f(x),&x为f(x)的连续点\\ \cfrac{f(x^+)+f(x^-)}{2},&x为f(x)的间断点 \end{cases} 2a0+n=1+ancoslnπx=f(x),2f(x+)+f(x),xf(x)xf(x)

​ 其中:
a n = 2 l ∫ 0 l f ( x ) c o s n π x l d x ,   n = 0 , 1 , 2 , . . a_n = \cfrac{2}{l}\int_{0}^lf(x)cos\cfrac{n\pi x}{l}dx,\space n=0,1,2,.. an=l20lf(x)coslnπxdx, n=0,1,2,..



  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值