求组合数的三种方式

求解组合数比较基本的三种方法

//按数据范围 从前往后

ll qmi(ll a,int b)
{
a%mod;
ll res=1;
while(b)
{
if(b&1)res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res;
}

for(int i=1;i<=n;i++)
	{
		C[i][i]=1;
		C[i][0]=1;
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=i+1;i<=n;j++)
		{
			C[j][i]=C[j-1][i-1]+C[j-1][i];
		}
	}




(常用
fact[0]=infact[0]=1;
for(int i=1;i<n;i++)
{
    fact[i]=(ll)fact[i-1]*i%mod;
    infact[i]=(ll)infact[i-1]*qmi(i,mod-2,p)%mod;
}


卢卡斯定理
若p是质数,则对于任意整数 1 <= m <= n,有:
    C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

 int C(int a,int b,int P)
 {
     if(a<b)return 0;
     ll x=1;
     ll y=1;
     for(int i=a,j=1;j<=b;j++,i--)
     {
         x=(ll)x*i%p;
         y=(ll)y*j%p;
     }
     return x*(ll)qmi(y,p-2,p)%p;
 }
 int lucas(ll a,ll b,int p)
 {
     if(a<p&&b<p)return C(a,b,p);
     return (ll)C(a%p,b%p,p)*lucas(a / p, b / p, p) % p;
 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值