Deep learning in video multi-object tracking A survey 论文笔记

 

### 基于深度学习的视觉目标跟踪算法概述 #### 背景介绍 近年来,随着深度学习技术的发展,基于深度学习的目标跟踪算法取得了显著进展。这些算法利用卷积神经网络(CNNs)的强大特征提取能力以及先进的优化策略,在复杂场景下实现了更高的精度和鲁棒性[^1]。 #### 主要方法分类 目前主流的深度学习驱动的多对象跟踪(MOT, Multiple Object Tracking)可以分为两类:离线跟踪和在线跟踪。 - **离线跟踪**允许访问整个视频序列后再进行处理,因此可以在时间维度上充分利用前后帧的信息来提高准确性。例如,《Deep Learning in Video Multi-Object Tracking: A Survey》提到的一些经典算法依赖全局优化框架完成轨迹关联。 - **在线跟踪**则需实时运行,无法提前获取未来帧的数据。这类方法通常结合检测器与追踪模块共同工作,如AP-RCNN通过粒子滤波机制增强对缺失目标的恢复能力[^4]。 #### 关键挑战及其解决方案 在实际应用过程中存在若干难点需要克服: 1. **遮挡问题** 当前物体被部分或者完全遮蔽时如何保持稳定识别成为一大难题。一些研究者提出了创新思路应对这种情况——比如Sheng等人开发出了eHAF16方案引入超像素分割手段辅助定位隐藏区域;还有其他学者尝试借助长期记忆结构记住历史状态以便更好地推断当前状况。 2. **光照变化影响** 不同环境下的光线条件会对图像质量造成干扰进而降低模型表现水平。对此可以通过预训练阶段增加样本多样性以及后期微调特定领域参数等方式缓解此类现象带来的负面影响[^2]。 3. **计算效率考量** 实现高性能的同时也要顾及到资源消耗情况。针对这一点,轻量化版本网络架构应运而生,它们能在保证效果不打折扣的前提下大幅削减运算需求,使得部署至边缘设备成为可能。 #### 示例代码片段展示 以下是简单的YOLOv5用于目标检测的基础配置文件修改示例,作为构建更复杂的跟踪系统的起点之一: ```yaml # YOLOv5 custom training configuration file example train: ../datasets/train/images/ val: ../datasets/valid/images/ nc: 80 # number of classes (COCO has 80) names: ['person', 'bicycle', ... ] # class names list truncated here for brevity ``` 接着可考虑将上述基础扩展成完整的SORT(Simple Online Realtime Tracking)实现流程,具体参见官方文档或其他开源项目参考资料进一步深入探讨。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值