一、开发背景
在当前的信息化时代,随着科技的不断进步,政务中心、数据中心、工业园区等公共场所的安全管理面临着越来越多的挑战。特别是火灾安全隐患,一旦发生,将造成重大的人员伤亡和财产损失。传统的火灾检测方式多依赖于人工巡检和传统的烟雾报警器,存在检测效率低、响应速度慢、误报率高等问题。因此,开发一种高效、准确、实时的火灾检测系统显得尤为重要。
近年来,深度学习技术,特别是目标检测技术在计算机视觉领域取得了显著进展。YOLO(You Only Look Once)系列算法作为其中的佼佼者,以其速度快、精度高的特点在实时目标检测任务中表现出色。YOLOv8 作为该系列的最新版本,不仅继承了前代算法的优点,还在速度和精度上进行了进一步优化。这为基于智能视觉的火灾检测提供了新的技术可能。
在此背景下,我们团队结合智能视觉技术的前沿发展,特别是 YOLOv8 算法的优势,开发了“基于 YOLOv8 的烟雾明火检测系统 V1.0”。旨在通过智能化手段,提升火灾检测的效率和准确性,为政务中心、数据中心等公共场所提供更加安全、可靠的运行环境。
二、开发目的
本系统的开发旨在解决传统火灾检测方式中存在的诸多问题,具体目标如下:
- 提升检测效率:通过 YOLOv8 算法的高速检测能力,实现对烟雾和明火等火灾隐患的实时检测,大幅提升检测效率。
- 降低误报率:利用深度学习算法的强大特征提取能力,提高火灾检测的准确性,减少误报和漏报情况