一、引言
在安全监控领域,火焰与烟雾检测是一个非常重要且紧急的任务,尤其在高风险区域如油田、化工厂、仓库等地方。及时识别火焰和烟雾能够有效减少灾难的发生,保护人员生命安全和财产损失。近年来,深度学习技术的迅猛发展,尤其是目标检测领域,提供了更为高效且准确的火焰和烟雾检测方法。
本项目使用 YOLOv11(You Only Look Once)深度学习模型,结合PySide6开发图形用户界面(GUI)来实现火焰与烟雾的实时检测系统。本文将详细介绍整个系统的设计过程,从数据准备、模型训练、界面设计到最终部署。
二、项目目标与挑战
本系统的目标是实现一个可以实时检测火焰和烟雾的应用。系统的主要挑战在于:
- 实时性:需要在短时间内处理视频流或静态图像,并准确识别火焰和烟雾。
- 高精度:火焰和烟雾可能与周围环境相似,需要确保高精度的分类和定位。
- 易用性:开发一个易于操作的用户界面,使得非专业人士也能方便地使用该系统。