- 层次分析法,简称AHP,解决评价类问题。那个方案最好,那个员工表现最好,比较主观。
- 基本步骤
- 定义目标层、决策层、方案层
- 目标层:我们评价的目标是啥?
- 决策层:我们根据什么东西来评价所选方案的好坏?(评价指标是啥)
- 方案层:我们为了解决目标有几种可以选择的方案?
- 构造判断矩阵
- 用成对比较法构造判断矩阵
- 成对比较法:两两比较法,两个指标两个指标进行比较
- 指标比较完后,要在同个指标下两两比较物品
- 但是会出现前后不一致的情况,逻辑矛盾,所以要进行下一步
- 用成对比较法构造判断矩阵
- 判断矩阵的一致性矩阵
- 检验我们构造的判断矩阵和一致性矩阵有无太大区别
- 式子主要说明行列间满足倍数关系
- 假设i=2,j=3,第二行第三列的元素*第3行所有元素等于第二行所有元素
- 求权重
- 算数平均法
- 判断矩阵进行归一化(每个元素除以所在列的和)
- 将归一化的矩阵对各行求平均
- 几何平均法
- 特征值
- 算数平均法
- 检验我们构造的判断矩阵和一致性矩阵有无太大区别
- 计算权重和得分
- 定义目标层、决策层、方案层
- AHP软件操作
- 层次结构模型
- 判断矩阵
- 计算结果
- 判断矩阵:通过发表的文献、书籍、网络权威分析
- 优缺点
- 优点
- AHP原理简单,实现过程简单
- 决策者可以直接参与方案和指标的选取,增加决策是实用性和有效性
- 缺点
- 如果n值比较多的话判断矩阵和一致性矩阵的差异会比较大
- 主观性。
- 结合熵权法和寻优算法一起使用。
- 如模拟退火
- 结合熵权法和寻优算法一起使用。
- 优点