跑Yolov5-v7.0模型遇到的问题(已跑通)

Yolov5代码来源:yolov5/utils at master · ultralytics/yolov5 (github.com)

一开始我本来是下载Yolov5-v5.0版本的,因为我想跟着看小土堆的视频,但是因为目前已经更新到v7.0版本了,以致于我运行的时候出现了很多问题。后面我看了博主发各种问题的解决方法,有些问题实在是找不到方法,然后我就去下了7.0的版本,果然问题少了很多,至少可以运行了。

在训练自己的自创的数据集时出现了很多很多问题,如下:

(1)ImportError: Bad git executable.

这个问题解决地莫名其妙,我去网上搜了解决方法,看到有说出现这个问题是因为没有下载Git这个软件或者没有将Git写入Path,所以我去下载了,也将路径写入了Path,但回去Pycharm运行train.py还是有问题,昨天我就放弃了,然后今天重新跑的时候,这个问题消失了,所以可能是下载完、路径改完之后还得电脑重启??

(2)Exception: Dataset not found.

这个问题提示说我的数据集找不到,然后我就尝试着去改路径。

以下是我yolov5文件的目录概览,“Exception: Dataset not found.”这个报错问题是因为数据集的存放位置和mydata.yaml中数据集对应的相对路径不匹配。

/yolo
   ├── train
Yolov5-v7.0是一种基于深度学习的目标检测算法,而实例分割模型则是在目标检测的基础上,进一步将目标的每个像素进行分割和标注。以下是一个基于Yolov5-v7.0开发实践实例分割模型的超详细教程: 1. 数据准备:首先,需要准备一组包含目标实例和对应标注的图像样本。每个样本图像应包含一个或多个目标实例,并给每个实例标注一个标签和边界框。同时,对每个实例进行像素级别的标注,即分割标签。 2. 模型训练:使用Yolov5-v7.0作为基础模型过调整网络结构和参数进行训练。首先,加载预训练的权重,然后冻结部分层级,仅训练网络的顶层。接着,解冻所有层级,进行端到端的训练,以微调模型的性能。在训练过程中,使用交叉熵损失函数和Adam优化器进行模型的优化。 3. 数据增强:为了增加数据的多样性和模型的鲁棒性,可以对训练样本进行数据增强。可以使用随机裁剪、旋转、缩放和水平翻转等技术实现数据增强。 4. 模型评估:为了评估模型的性能,可以使用验证集进行模型评估。过计算准确率、召回率和F1得分等指标,来评估模型的性能。 5. 模型应用:完成训练和评估后,可以将模型应用到新的图像中进行实例分割。模型的前向传播,可以得到每个像素的分割标签,并将其可视化。 总结起来,基于Yolov5-v7.0开发实践实例分割模型的详细教程包括数据准备、模型训练、数据增强、模型评估和模型应用等步骤。过这个教程,你可以了解到如何使用Yolov5-v7.0进行实例分割,并对数据处理、模型训练和模型评估等方面有更深入的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值