YOLOv8(个人记录)

1、下载YOlOv8代码:ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite (github.com)

2、解压文件之后,打开Anaconda Prompt,先激活进入你设定的环境(pytorch是我建的环境)【后面我又新建了个yolov8环境】,然后定位到你将yolov8解压到的位置,最后输入:

pip install -e .

 安装完成之后也可以进行一些库的安装,比如:

pip install jupyterlab tensorboard

3、查看ultralytics有没有安装成功可以命令行输入yolo,如果输入以下信息则说明安装成功

 一开始我的是安装完之后输入yolo是显示“yolo不是内部命令”的提示,后来我就去以管理员的身份打开Anaconda prompt重新输入pip install ultralytics,最后就是安装成功啦!

4、用pycharm终端运行yolov8,当我输入yoyo时出现“ ImportError: cannot import name 'Callable' from 'collections' (D:\Anaconda3\Lib\collections\__init__.py) ”

原因:因为collections的方法在3.10以上版本里都被取消了,我用的是3.11版本的。

解决方法:[解决] 问题:ImportError: cannot import name ‘Callable‘ from ‘collections‘_cannot import name 'callable' from 'collections-CSDN博客

5、在执行预测命令“   yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg'   ”
时出现“Error: No such command 'predict'.”

解决方法:因为我是最新版的yolov8源码,没有setup.py文件,所以我先去github上找了个比较早的代码,将它的关于setup的内容都复制到我这了。最后再执行以下指令就可以了:

python setup.py install

 6、在验证环境配置是否成功并执行以下指令进行检测时,我发现它的检测结果是保存在C盘下的,如何修改为当前yolov8项目路径下呢?

yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg'

解决方法: 在C盘找到Ultralytics下的settings.yaml文件,打开内容如下,在此处可以进行run结果路径的修改。

7、训练自己的数据集时我输入的是以下命令行(路径我用的都是绝对路径):

data=D:\ultralytics-8.1.0\datasets\mycoco\mycoco128.yaml

model=D:\ultralytics-8.1.0\ultralytics\cfg\models\v8\myyolov8.yaml

pretrained=D:\ultralytics-8.1.0\yolov8n.pt

epochs=10

batch=2

 yolo detect train data=D:\ultralytics-8.1.0\datasets\mycoco\mycoco128.yaml model=D:\ultralytics-8.1.0\ultralytics\cfg\models\v8\myyolov8.yaml pretrained=D:\ultralytics-8.1.0\yolov8n.pt epochs=10 batch=2 lr0=0.01 resume=True 

yolo detect train data=\tmp\pycharm_project_739\ultralytics-8.1.0\datasets\mycoco\mycoco128.yaml model=\tmp\pycharm_project_739\ultralytics\cfg\models\v8\myyolov8.yaml  pretrained=\tmp\pycharm_project_739\ultralytics-8.1.0\yolov8n.pt epochs=10 batch=2 lr0=0.01 resume=True 

 yolo detect train data=ultralytics-8.1.0\datasets\mycoco\mycoco128.yaml model=ultralytics-8.1.0\ultralytics\cfg\models\v8\myyolov8.yaml pretrained=ultralytics-8.1.0\yolov8n.pt epochs=20 batch=2 lr0=0.01 resume=True 

8、验证输入的命令行如下:

yolo detect val data=D:\ultralytics-8.1.0\datasets\mycoco\mycoco128.yaml model=D:\ultralytics-8.1.0\runs\detect\train2\weights\best.pt batch=2 

9、预测时输入以下命令:

yolo predict model=D:\ultralytics-8.1.0\runs\detect\train2\weights\best.pt source=D:\ultralytics-8.1.0\runs\detect\predict\bottle_14.jpg

预测没有成功,出现以下问题:

发现是命令少了个“model=”,改了之后可以了没问题了,但是因为数据太少best.pt没有结果。 

### 安装和配置YOLOv8 #### 准备环境 为了在轻薄本上顺利安装并运行YOLOv8,建议先确认计算机具备基本硬件条件和支持CUDA加速的GPU。如果笔记本电脑不支持CUDA,则可以依赖CPU进行推理,但这可能显著降低处理速度。 对于软件环境而言,推荐的操作系统为Windows 10/11 或 Linux (Ubuntu),并且需要预先安装Python解释器版本3.7以上以及pip工具来管理Python包[^1]。 #### 创建虚拟环境 创建一个新的Python虚拟环境有助于隔离项目所需的库文件和其他全局安装的应用程序之间的冲突: ```bash python -m venv yolov8-env source yolov8-env/bin/activate # Unix or MacOS yolov8-env\Scripts\activate # Windows ``` 激活之后,在该环境中继续后续操作可确保不会影响系统的其他部分。 #### 安装必要的依赖项 进入新建立的虚拟环境下,通过`requirements.txt`文件获取官方指定的所有必需组件列表,并执行如下命令完成批量下载与设置过程: ```bash pip install -r requirements.txt ``` 此步骤会自动解决大部分兼容性和版本匹配方面的问题,简化了手动调整的过程。 #### 下载预训练模型权重 访问Ultralytics官方网站或其他可信资源站点下载对应于YOLOv8架构下的预训练模型权重文件(.pt格式)。这些经过大量数据集训练过的参数能够帮助实现更加快捷高效的迁移学习应用案例研究。 #### 数据集转换至YOLO格式 由于YOLO算法框架要求输入特定结构化的标签信息,因此需将原始图像及其标注转化为符合标准的形式。这通常涉及到把来自不同源(比如COCO, VOC等)的数据重新整理成每张图片配有一个同名txt文档的方式存储边界框坐标[x_center, y_center, width, height]及类别ID。 #### 测试部署效果 最后一步是在本地机器上验证整个流程是否正常运作。可以通过调用内置API接口加载自定义样本图片来进行简单的预测实验;也可以利用提供的评估脚本来衡量模型性能指标如精度(Precision), 召回率(Recall) 和 mAP(mean Average Precision)等等。 ```python from ultralytics import YOLO model = YOLO('path/to/best.pt') # 加载模型路径 results = model.predict(source='image.jpg', save=True) # 对单幅或多帧视频做推断 print(results) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值