MEA优化BP神经网络的压力脉动预测方法

文章介绍了一种基于思维进化算法(MEA)优化的BP神经网络来预测混流式水轮机尾水管压力脉动的方法。通过MEA优化,BP神经网络的预测精度提升至0.991 48,提高了预测效果和精度,对于混流式水轮机的稳定运行具有重要意义。
摘要由CSDN通过智能技术生成

摘要

对于混流式水轮机而言,尾水管的压力脉动是导致机组振动、影响机组稳定运行的重要因素。为了在机组设计阶段就能有效预测混流式水轮机尾水管的压力脉动并对其采取相应措施以减小压力脉动,引入BP神经网络对压力脉动进行预测,利用思维进化算法(MEA)的全局搜索能力优化BP神经网络的权值和阈值。结果表明,经过MEA优化后的BP神经网络预测精度可达0.991 48,比传统BP神经网络的预测精度提高0.721%。MEA优化BP的压力脉动预测效果比传统BP的预测效果更好、精度更高,可用于实际工程。

关键词

尾水管; 压力脉动; 思维进化算法; BP神经网络; 压力脉动预测

0 引言

目前,在水力发电系统中,混流式水轮机是占比最大的能量转换机组,由于技术的不断进步,水力资源的不断开发,其运行的稳定性有了更高要求[1-3]。当混流式机组在偏工况或者低负荷运行时,转轮出口处会产生较大的出口环量,使尾水管内部产生涡带,从而导致压力脉动的产生,诱发机组振动,影响机组的稳定运行及寿命[3-7]。因此,研究尾水管压力脉动的预测问题,在设计时就对压力脉动的产生采取措施,具有重要的工程意义。

对于水轮机的研究,国际上普遍采用IEC60193标准[8],以缩小比例的模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值