基于NOMA的车辆边缘计算网络优化策略

本文探讨了在车联网中,如何通过非正交多址接入(NOMA)和移动边缘计算(MEC)的结合,优化任务卸载、用户分簇、计算资源分配和发射功率控制,以最小化任务处理成本和时延。通过建立问题模型并提出低复杂度的求解方法,仿真结果证明了该策略在成本优化方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

目前,车载网络正面临着为车辆提供无处不在的连接和大量计算密集型、时延敏感型智能服务的挑战。为了应对这些挑战,非正交多址接入(NOMA, non-orthogonal multiple access)和移动边缘计算(MEC, mobile edge computing)被认为是两种较有前景的技术,它们分别允许多个车辆共享相同的无线资源以及在车辆边缘使用强大的边缘计算资源。在基于 NOMA 的车辆边缘计算网络中,在保证任务处理时延的情况下,提出了任务卸载、用户分簇、计算资源分配和发射功率控制的联合优化问题,使得任务处理成本最小化。由于所提出的问题难以解决,因此将其分解为子问题,并提出了低复杂度和易于实现的方法来解决。仿真结果表明,与其他基准算法相比,该算法在最小化成本方面表现良好。

关键词: 边缘计算 ; 非正交多址接入 ; 车联网

1 引言

近年来,随着车辆的普及以及车联网的发展,新型智能应用出现得越来越多,如智能交通、自动驾驶、虚拟现实和动态高精度地图导航等,给人们的生活带来了极大的便利。这些计算密集型应用通常需要大量的存储空间和计算资源,且对时延有极高的要求。对于车联网终端用户(以下简称车辆用户或者用户)来说,由于其处理能力有限,无法很好地支持这些智能应用。另外,越来越多的车辆涌入无线网络,与之矛盾的是频谱资源严重紧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值