摘要:
目前,车载网络正面临着为车辆提供无处不在的连接和大量计算密集型、时延敏感型智能服务的挑战。为了应对这些挑战,非正交多址接入(NOMA, non-orthogonal multiple access)和移动边缘计算(MEC, mobile edge computing)被认为是两种较有前景的技术,它们分别允许多个车辆共享相同的无线资源以及在车辆边缘使用强大的边缘计算资源。在基于 NOMA 的车辆边缘计算网络中,在保证任务处理时延的情况下,提出了任务卸载、用户分簇、计算资源分配和发射功率控制的联合优化问题,使得任务处理成本最小化。由于所提出的问题难以解决,因此将其分解为子问题,并提出了低复杂度和易于实现的方法来解决。仿真结果表明,与其他基准算法相比,该算法在最小化成本方面表现良好。
关键词: 边缘计算 ; 非正交多址接入 ; 车联网
1 引言
近年来,随着车辆的普及以及车联网的发展,新型智能应用出现得越来越多,如智能交通、自动驾驶、虚拟现实和动态高精度地图导航等,给人们的生活带来了极大的便利。这些计算密集型应用通常需要大量的存储空间和计算资源,且对时延有极高的要求。对于车联网终端用户(以下简称车辆用户或者用户)来说,由于其处理能力有限,无法很好地支持这些智能应用。另外,越来越多的车辆涌入无线网络,与之矛盾的是频谱资源严重紧