可见光与红外双模态图像融合行人检测

本文提出了一种融合可见光与红外图像的双模态行人检测网络IWFC-Net,结合光照感知和卷积块注意力模块(CBAM)以提高目标检测精度和降低误检漏检率。通过光照感知权重指导特征融合,并使用CBAM增强特征表示,实现实时多尺度行人检测。实验表明,IWFC-Net在KAIST和LLVIP数据集上表现出优越性能,同时减少了冗余信息的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

由于传统融合检测方法未能较好地解决双模态融合中冗余信息带来的误检、漏检问题。为了更有效地利用双模态信息,提出一种光照感知和卷积块注意模块相结合的双模态特征融合行人检测网络(IWFC-Net)。首先根据可见光图像提取光照感知值,将其作为融合权重指导双模态图像特征融合;然后加强融合特征进行卷积块注意力机制加强,强化特征表示;最后将加强后的融合特征送入YOLO目标检测层进行多尺度行人预测,得到多尺度行人检测结果。在KAIST、LLVIP多光谱数据集上的实验结果表明,所提方法既能有效融合双模图像互补信息提升目标检测精度,又能显著降低冗余信息造成的漏检和误检率,还能达到35 FPS左右的检测速度,以期为行人检测提供新的解决方法。

0 引言

行人检测作为计算机视觉领域中最基本、最重要的任务。近年来,由于行人检测在视频监控

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值