【摘 要】数字孪生业务的差异化需求,要求孪生层能够快速可靠地获取物理系统的网络状态和终端设备的感知信息等数据,且具备防御敌意干扰和通信干扰的能力。智能无线通信抗干扰技术采用强化学习优化发射功率和信道选择等通信策略,提升抗干扰性能。然而,目前大多方法假设能够及时准确地获取通信质量反馈和具备良好的干扰估计能力,在数字孪生业务中依然面临抗干扰优化速度慢和承载业务差异化需求难以满足的问题。因此,提出了一种面向数字孪生的智能无线通信抗干扰方案,挖掘干扰特征以及数字孪生业务的服务质量需求,引入关于时延的安全约束并设计效益评估方法,优化终端设备的通信抗干扰策略。在基于传感手套和机械臂的数字孪生手势重建系统中,实验验证了所提方案与现有智能通信抗干扰方案相比,降低了时延和通信能耗,提高了手势重建成功率。
【关键词】数字孪生;无线通信;敌意干扰;强化学习
0 引言
面向数字孪生的通信抗干扰技术决定了自动驾驶汽车和增强现实眼镜等物理系统中的终端设备与孪生层的服务器之间感知信息和网络状态等数据的传输时延,影响数字孪生技术对道路交通和通信网络等物理系统的建模准确性和实时性及其所承载业务的服务质量,对数字孪生技术在智能交通系统、6G网络和医疗等应用中的发展至关重要[1]。敌意干扰信号和周边无线设备信号会影响数字孪生系统的数据传输,使得终端设备到服务器的传输时延增大甚至中断&#x