贪心算法
介绍
- 贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法。
- 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。
贪心算法最佳应用 - 集合覆盖
假设存在如下表的需要付费的广播台,以及广播台信号可以覆盖的地区,如何选择最少得广播台,让所有的地区都可以接收到信号。
广播台 | 覆盖地区 |
---|---|
k1 | “北京”,“上海”,“天津” |
k2 | “广州”,“北京”,“深圳” |
k3 | “成都”,“上海”,“杭州” |
k4 | “上海”,“天津” |
k5 | “杭州”,“大连” |
思路分析
目前并没有算法可以快速计算得到准备的值,使用贪心算法,则可以得到非常接近的解,并且效率高,选择策略上,因为需要覆盖全部地区的最小集合:
- 遍历所有的广播电台,找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)。
- 将这个电台加入到一个集合中,想办法把该电台覆盖的地区在下次比较时去掉。
- 重复第 1 步直到覆盖了全部的地区。
代码演示
public class GreedyAlgorithm {
public static void main(String[] args) {
// 创建广播电台,放入到 map
HashMap<String, HashSet<String>> broadcasts = new HashMap<>();
// 将各个电台放入到broadcasts
HashSet<String> hashSet1 = new HashSet<>();
hashSet1.add("北京");
hashSet1.add("上海");
hashSet1.add("天津");
HashSet<String> hashSet2 = new HashSet<>();
hashSet2.add("广州");
hashSet2.add("北京");
hashSet2.add("深圳");
HashSet<String> hashSet3 = new HashSet<>();
hashSet3.add("成都");
hashSet3.add("上海");
hashSet3.add("杭州");
HashSet<String> hashSet4 = new HashSet<>();
hashSet4.add("上海");
hashSet4.add("天津");
HashSet<String> hashSet5 = new HashSet<>();
hashSet5.add("杭州");
hashSet5.add("大连");
broadcasts.put("k1", hashSet1);
broadcasts.put("k2", hashSet2);
broadcasts.put("k3", hashSet3);
broadcasts.put("k4", hashSet4);
broadcasts.put("k5", hashSet5);
// 存放所有地区
HashSet<String> allAreas = new HashSet<>();
allAreas.add("北京");
allAreas.add("上海");
allAreas.add("天津");
allAreas.add("广州");
allAreas.add("深圳");
allAreas.add("成都");
allAreas.add("杭州");
allAreas.add("大连");
// 创建 ArrayList,存放选择的电台集合
ArrayList<String> selects = new ArrayList<>();
// 保存在遍历过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集
HashSet<String> tempSet = new HashSet<>();
// 定义一个 maxKey 保存在一次遍历过程中,能够覆盖最大未覆盖的地区对应的电台的 key
// 如果 maxKey 不为空,则会加入到 selects 中
String maxKey = null;
while (allAreas.size() != 0) { // 如果 allAreas 不为零,则表示还没有覆盖到所有的地区
// 每次循环 置空
maxKey = null;
for (String key : broadcasts.keySet()) {
// 每进行一次循环
tempSet.clear();
HashSet<String> areas = broadcasts.get(key);
tempSet.addAll(areas);
// 求出 tempSet 和 allAreas 集合的交集,交集会赋给 tempSet
tempSet.retainAll(allAreas);
// 如果当前这个集合包含的未覆盖地区的数量,比 maxKey 指向的集合还要多,就需要重置 maxKey
// tempSet.size() > broadcasts.get(maxKey).size() 体现出贪心算法的特点
if (tempSet.size() > 0 && (maxKey == null || tempSet.size() > broadcasts.get(maxKey).size())) {
maxKey = key;
}
}
// maxKey != null 就应该将 maxKey 加入 selects
if (maxKey != null) {
selects.add(maxKey);
// 将 maxKey 指向的广播电台的地区,从 allAreas 去掉
allAreas.removeAll(broadcasts.get(maxKey));
}
}
System.out.println("结果为:" + selects);
}
}
贪心算法注意事项和细节
- 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。
- 比如上题的算法选出的是 k1,k2,k3,k5,符合覆盖了全部的地区。
- 但是我们发现 k2,k3,k4,k5,也可以覆盖全部地区,如果 k2 的使用成本低于 k1,那那么我们上题的 k1,k2,k3,k5 虽然是满足条件,但是并不是最优的。