HNU-算法设计与分析-作业4-矩阵连乘问题【动规】(2021级)

1.最优子结构性质

        证明:A[i][j]的最优解是以k划分的A[i][k],A[k+1][j],则A[i][k]是矩阵i到j的最优解

解:

        假设其不是矩阵i到j的最优解,则存在一个解A'[i][k]的计算量更小;

        所以存在一个A'[i][j]=A'[i][k]+A[k+1][j]+p[i-1]*p[k]*p[j],其计算量小于A[i][j],

        与A[i][j]是最优解相矛盾。

2.递推方程

A[i][j]=\left\{\begin{matrix} 0,i=j \\ max\left \{ A[i][k]+A[k+1][j]+p_{i-1}*p_{k}*p_{j} \right \} ,i<=k<j \end{matrix}\right.

3.最优值

#include <iostream>
using namespace std; 

void MatrixChain(int *p,int n,int m[7][7],int s[7][7])
{
        for (int i = 1; i <= n; i++) m[i][i] = 0;
        for (int r = 2; r <= n; r++)
           for (int i = 1; i <= n - r+1; i++) {
              int j=i+r-1;
              m[i][j] = m[i+1][j]+ p[i-1]*p[i]*p[j];
              s[i][j] = i;
              for (int k = i+1; k < j; k++) {
                 int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
                 if (t < m[i][j]) { m[i][j] = t; s[i][j] = k;}
              }
          }
}

int main(int argc, char** argv) {
	int n=6;
	int p[7]={30,35,15,5,10,20,25};
	int m[7][7];
	int s[7][7];
	for(int i=0;i<=n;i++){
		for(int j=0;j<=n;j++){
			m[i][j]=0;
			s[i][j]=0;
		}
	}
	
	MatrixChain(p,n,m,s);
	
	cout<<"m: "<<endl; 
    for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){cout<<m[i][j]<<"\t";}
		cout<<endl;}
	cout<<endl<<endl;
	
	cout<<"s: "<<endl; 
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){cout<<s[i][j]<<"\t";}
		cout<<endl;
		}
	return 0;
}

m[i][j]

123456
1015750787593751187515125
2026254375712510500
3075025005375
4010003500
505000
60

s[i][j]

123456
1011333
202333
30333
4045
505
60

4.最优解

由s数组可知,

A[1][6]由3划分,即A[1]3]和A[4][6];

而A[1][3]由1划分,即A[1][1],A[2][3];

    A[4][6]由5划分,即A[4][5],A[6][6]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值