任务描述
本关任务:图的存储结构为邻接矩阵,要求编写函数实现狄克斯特拉算法。
测试说明
平台会对你编写的代码进行测试:
测试输入:
1
lt4.txt
输入说明:
第一行输入1,表示输入图的类型为有向网。
第二行输入文件名,该文件里保存了图的数据信息,内容如下:
7
12
0
1
2
3
4
5
6
0 1 4
0 2 6
0 3 6
1 2 1
1 4 6
2 4 6
2 5 4
3 2 2
3 5 5
4 6 6
5 4 1
5 6 8
第1行为图的顶点的个数n;
第2行为图的边的条数m;
第3行至第n+2行是n个顶点的数据;
第n+3行至第n+m+2行是m条边的数据;
预期输出:
有向网
7个顶点12条边。顶点依次是: 0 1 2 3 4 5 6
图的邻接矩阵:
∞ 4 6 6 ∞ ∞ ∞
∞ ∞ 1 ∞ 6 ∞ ∞
∞ ∞ ∞ ∞ 6 4 ∞
∞ ∞ 2 ∞ ∞ 5 ∞
∞ ∞ ∞ ∞ ∞ ∞ 6
∞ ∞ ∞ ∞ 1 ∞ 8
∞ ∞ ∞ ∞ ∞ ∞ ∞
dist: ∞ 4 6 6 ∞ ∞ ∞
path: -1 0 0 0 -1 -1 -1
dist: ∞ 4 5 6 10 ∞ ∞
path: -1 0 1 0 1 -1 -1
dist: ∞ 4 5 6 10 9 ∞
path: -1 0 1 0 1 2 -1
dist: ∞ 4 5 6 10 9 ∞
path: -1 0 1 0 1 2 -1
dist: ∞ 4 5 6 10 9 17
path: -1 0 1 0 1 2 5
dist: ∞ 4 5 6 10 9 16
path: -1 0 1 0 1 2 4
dist: ∞ 4 5 6 10 9 16
path: -1 0 1 0 1 2 4
从0到1最短路径长度为:4 0→1
从0到2最短路径长度为:5 0→1→2
从0到3最短路径长度为:6 0→3
从0到4最短路径长度为:10 0→1→4
从0到5最短路径长度为:9 0→1→2→5
从0到6最短路径长度为:16 0→1→4→6
输出说明:
第一行输出图的类型。
第二部分起输出图的顶点和边的数据信息。
第三部分输出辅助数组的变化过程。
第四部分输出从起点到其余各顶点的最短路径。
代码如下
法一:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<limits.h>
#include<iostream>
using namespace std;
#include"MGraph.h"
void Dijkstra(MGraph g,int v); //求从v到其他顶点的最短路径
void DispAllPath(MGraph &g,int dist[],int path[],int S[],int v) ;//输出从顶点v出发的所有最短路径
void Dispdistpath(int dist[],int path[],int n); //输出dist数组和path数组
int main()
{
MGraph g;
int i,j,n;
CreateGraphF(g); /* 利用数据文件创建有向图*/
Display(g); /* 输出有向图*/
Dijkstra(g,0);
return 0;
}
void Dijkstra(MGraph g,int v)
{
//求从v到其他顶点的最短路径
/********** Begin **********/
int min,val,dist[MAX_VERTEX_NUM],path[MAX_VERTEX_NUM],visi[MAX_VERTEX_NUM];
for(int i = 0; i < g.vexnum; i++){
dist[i] = g.arcs[v][i].adj;
if(dist[i]!=INFINITY){
path[i] = v;
}else{
path[i] = -1;
}
}
visi[v] = 1,val = 1;
while(val<g.vexnum){
int minVex = INFINITY,min;
for(int i = 0; i < g.vexnum; i++){
if(visi[i]==0&&dist[i]<minVex){
minVex = dist[i];
min = i ;
}
}
visi[min] = 1;
Dispdistpath(dist,path,g.vexnum);
for(int i = 0; i < g.vexnum; i++){
if(visi[i] == 0 && (dist[i] > dist[min] + g.arcs[min][i].adj)){
dist[i] = dist[min] + g.arcs[min][i].adj;
path[i] = min;
}
}
val++;
}
Dispdistpath(dist,path,g.vexnum);
DispAllPath(g,dist,path,visi,v);
/********** End **********/
}
void DispAllPath(MGraph &g,int dist[],int path[],int S[],int v) //输出从顶点v出发的所有最短路径
{
int i,j,k,count=0;
int apath[MAX_VERTEX_NUM],d; //存放一条最短路径(逆向)及其顶点个数
for (i=0;i<g.vexnum;i++)
if (path[i]!=-1)
count++;
if (count==1) //path中只有一个不为-1时表示没有路径
{ printf("从指定的顶点到其他顶点都没有路径!!!\n");
return;
}
for (i=0;i<g.vexnum;i++) //循环输出从顶点v到i的路径
if (S[i]==1 && i!=v)
{
//printf("从%s到%s最短路径长度为:%visi\t路径:",g.vexs [v],g.vexs[i],dist[i]);
cout<<"从"<<g.vexs [v]<<"到"<<g.vexs[i]<<"最短路径长度为:"<<dist[i]<<"\t";
d=0; apath[d]=i; //添加路径上的终点
k=path[i];
if (k==-1) //没有路径的情况
printf("无路径\n");
else //存在路径时输出该路径
{ while (k!=v)
{ d++; apath[d]=k;
k=path[k];
}
d++; apath[d]=v; //添加路径上的起点
//printf("%d",apath[d]); //先输出起点
cout<<g.vexs [ apath[d] ];
for (j=d-1;j>=0;j--) //再输出其他顶点
//printf("→%d",apath[j]);
cout<<"→"<<g.vexs [ apath[j] ];
printf("\n");
}
}
}
void Dispdistpath(int dist[],int path[],int n) //输出dist数组和path数组
{
int i;
printf("dist:\t");
for (i=0;i<n;i++)
if (dist[i]==INFINITY)
printf("%s\t","∞");
else
printf("%d\t",dist[i]);
printf("\n");
printf("path:\t");
for (i=0;i<n;i++)
printf("%d\t",path[i]);
printf("\n");
}
法二: 用t一个变量即可表示以确定最短路径的点
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<limits.h>
#include<iostream>
using namespace std;
#include"MGraph.h"
int min,val,dist[MAX_VERTEX_NUM],path[MAX_VERTEX_NUM],visi[MAX_VERTEX_NUM];
void Dijkstra(MGraph g,int v); //求从v到其他顶点的最短路径
void DispAllPath(MGraph &g,int dist[],int path[],int S[],int v) ;//输出从顶点v出发的所有最短路径
void Dispdistpath(int dist[],int path[],int n); //输出dist数组和path数组
int main()
{
MGraph g;
int i,j,n;
CreateGraphF(g); /* 利用数据文件创建有向图*/
Display(g); /* 输出有向图*/
Dijkstra(g,0);
return 0;
}
void Dijkstra(MGraph g,int v)
{
//求从v到其他顶点的最短路径
/********** Begin **********/
for(int i=0;i<g.vexnum;i++){
dist[i]=g.arcs[v][i].adj;
if(dist[i]==INFINITY) path[i]=-1;
else path[i]=v;
}
visi[v]=1;
for(int i=0;i<g.vexnum;i++){
int t=-1;
for(int i=0;i<g.vexnum;i++)
if(visi[i]==0&&(t==-1||dist[t]>dist[i])) t=i;
visi[t]=1;
// printf("%d",t);puts("");
Dispdistpath(dist,path,g.vexnum);
for(int i=0;i<g.vexnum;i++){
if(visi[i]==0&&(dist[i]>dist[t]+g.arcs[t][i].adj)){
dist[i]=dist[t]+g.arcs[t][i].adj;
path[i]=t;
}
}
//printf("%d",t);puts("");
}
//Dispdistpath(dist,path,g.vexnum);
DispAllPath(g,dist,path,visi,v);
/********** End **********/
}
void DispAllPath(MGraph &g,int dist[],int path[],int S[],int v) //输出从顶点v出发的所有最短路径
{
int i,j,k,count=0;
int apath[MAX_VERTEX_NUM],d; //存放一条最短路径(逆向)及其顶点个数
for (i=0;i<g.vexnum;i++)
if (path[i]!=-1)
count++;
if (count==1) //path中只有一个不为-1时表示没有路径
{ printf("从指定的顶点到其他顶点都没有路径!!!\n");
return;
}
for (i=0;i<g.vexnum;i++) //循环输出从顶点v到i的路径
if (S[i]==1 && i!=v)
{
//printf("从%s到%s最短路径长度为:%visi\t路径:",g.vexs [v],g.vexs[i],dist[i]);
cout<<"从"<<g.vexs [v]<<"到"<<g.vexs[i]<<"最短路径长度为:"<<dist[i]<<"\t";
d=0; apath[d]=i; //添加路径上的终点
k=path[i];
if (k==-1) //没有路径的情况
printf("无路径\n");
else //存在路径时输出该路径
{ while (k!=v)
{ d++; apath[d]=k;
k=path[k];
}
d++; apath[d]=v; //添加路径上的起点
//printf("%d",apath[d]); //先输出起点
cout<<g.vexs [ apath[d] ];
for (j=d-1;j>=0;j--) //再输出其他顶点
//printf("→%d",apath[j]);
cout<<"→"<<g.vexs [ apath[j] ];
printf("\n");
}
}
}
void Dispdistpath(int dist[],int path[],int n) //输出dist数组和path数组
{
int i;
printf("dist:\t");
for (i=0;i<n;i++)
if (dist[i]==INFINITY)
printf("%s\t","∞");
else
printf("%d\t",dist[i]);
printf("\n");
printf("path:\t");
for (i=0;i<n;i++)
printf("%d\t",path[i]);
printf("\n");
}
法三 :在法二的基础上以创建优先队列的方式进行堆优化
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<limits.h>
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
#include"MGraph.h"
typedef pair<int,int>PII;
int min,val,dist[MAX_VERTEX_NUM],path[MAX_VERTEX_NUM],visi[MAX_VERTEX_NUM];
void Dijkstra(MGraph g,int v); //求从v到其他顶点的最短路径
void DispAllPath(MGraph &g,int dist[],int path[],int S[],int v) ;//输出从顶点v出发的所有最短路径
void Dispdistpath(int dist[],int path[],int n); //输出dist数组和path数组
int main()
{
MGraph g;
int i,j,n;
CreateGraphF(g); /* 利用数据文件创建有向图*/
Display(g); /* 输出有向图*/
Dijkstra(g,0);
return 0;
}
void Dijkstra(MGraph g,int v)
{
//求从v到其他顶点的最短路径
/********** Begin **********/
for(int i=0;i<g.vexnum;i++){
dist[i]=g.arcs[v][i].adj;
if(dist[i]==INFINITY) path[i]=-1;
else path[i]=v;
}
for(int i=0;i<g.vexnum;i++) dist[i]=INFINITY;
//visi[v]=1;//起点处的标记易忽视
dist[v]=INFINITY;
priority_queue<PII,vector<PII>,greater<PII>>heap;
heap.push({0,v});
int numz=0;
while(!heap.empty()){
PII t=heap.top();
heap.pop();
//visi[v]=1;
// printf("%d",t);puts("");
int ver=t.second,distance=t.first;
if(visi[ver]) continue;
visi[ver]=1;
for(int i=0;i<g.vexnum;i++)
{
if (g.arcs[ver][i].adj!=INFINITY){
// int j=e[i];
// printf("%d %d %d %d %d",i,ver,dist[i],distance,g.arcs[ver][i].adj);puts("");
if(!visi[i]&&dist[i]>distance+g.arcs[ver][i].adj)
{
dist[i]=distance+g.arcs[ver][i].adj;
heap.push({dist[i],i});
path[i]=ver;
if(i==0)
numz++;
}
}
}
Dispdistpath(dist,path,g.vexnum);
// printf("%d",numz);puts("");
}
//Dispdistpath(dist,path,g.vexnum);
DispAllPath(g,dist,path,visi,v);
/********** End **********/
}
void DispAllPath(MGraph &g,int dist[],int path[],int S[],int v) //输出从顶点v出发的所有最短路径
{
int i,j,k,count=0;
int apath[MAX_VERTEX_NUM],d; //存放一条最短路径(逆向)及其顶点个数
for (i=0;i<g.vexnum;i++)
if (path[i]!=-1)
count++;
if (count==1) //path中只有一个不为-1时表示没有路径
{ printf("从指定的顶点到其他顶点都没有路径!!!\n");
return;
}
for (i=0;i<g.vexnum;i++) //循环输出从顶点v到i的路径
if (S[i]==1 && i!=v)
{
//printf("从%s到%s最短路径长度为:%visi\t路径:",g.vexs [v],g.vexs[i],dist[i]);
cout<<"从"<<g.vexs [v]<<"到"<<g.vexs[i]<<"最短路径长度为:"<<dist[i]<<"\t";
d=0; apath[d]=i; //添加路径上的终点
k=path[i];
if (k==-1) //没有路径的情况
printf("无路径\n");
else //存在路径时输出该路径
{ while (k!=v)
{ d++; apath[d]=k;
k=path[k];
}
d++; apath[d]=v; //添加路径上的起点
//printf("%d",apath[d]); //先输出起点
cout<<g.vexs [ apath[d] ];
for (j=d-1;j>=0;j--) //再输出其他顶点
//printf("→%d",apath[j]);
cout<<"→"<<g.vexs [ apath[j] ];
printf("\n");
}
}
}
void Dispdistpath(int dist[],int path[],int n) //输出dist数组和path数组
{
int i;
printf("dist:\t");
for (i=0;i<n;i++)
if (dist[i]==INFINITY)
printf("%s\t","∞");
else
printf("%d\t",dist[i]);
printf("\n");
printf("path:\t");
for (i=0;i<n;i++)
printf("%d\t",path[i]);
printf("\n");
}