琴生不等式一般形式_双变量不等式之齐次构造

齐次构造法,如果导函数零点方程不是二次式,是对数方程时,我们无法直接求得根系关系:

,就可以构造以下齐次式:

做和差运算,代换出:

③用

来换元求解,得到

④构造

的最值,得证

【例1-1】已知函数

,若
有两个极值点
,

证明:

.

【分析】先求导,导函数是超越函数,我们选择其次构造法来求证. 【解析】求导

,由
,

求和差有

,所以有
,

则有

,

不妨设

,令
,

要证明

,则可以证明
,

,
,

所以

单调递增,有
.即得证.

【小结】首先方向要选对,导函数是超越函数时,齐次构造是首选,在换元后,注意为什么不直接构造函数

来求最值,因为这样的导数太复杂,难以计算,回顾我们在讲单变量不等式证明时,简单函数直接求最值,复杂函数,先分离为简单函数,再求最值.这里就是这个道理.所以我们分离为
,这样就是两个简单函数,构造的函数我们就比较好求了.

【例1-2】已知函数

在定义域内有两个极值点,记两个极值点为
,且
,求证:
.

【分析】由零点方程组

得到
和齐次式
.利用
换元,构造函数求解.

【解析】求导

,有

所以有:

,
,

代入后:

.

,

欲证

.

.只要
即得证.

求导

,

所以

单调递增,
,得证.

一般证明

的关系式时,可以考虑
的转化,通过齐次构造来求解,还有那些形式可以齐次构造呢.

【例2-1】已知函数

,设函数
图象上不重合的两点
,证明:
.(
是直线
的斜率)

【分析】表示出

,就是常见齐次形式
,喜闻乐见,换元,构造求证.

【解析】

,
,

原不等式等价于:

齐次式证明:因为

,等价于
.

,即证明:
.

求导,

.所以
单调递增.
,得证.

【例2-2】已知函数

的图象有两个交点,设交点横坐标分别是
.若
,

证明:

.

【分析】由交点关系得到方程组

,代入
构造齐次关系.

【解析】由

①,

,因为
,

等价于

,

代入①有:

,因为
,令
,

即证明

,

求导

,所以
单调递增,
得证.

以上题型都是对数形式的双变量不等式,我们尝试的是齐次构造来处理,如果是指数形式的双变量不等式,又如何处理呢,我们下一节来讲解.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值