学习目标
我们所采用的学习内容来自B站的Lizongzhang老师的R语言的学习分享
今天学习的主要内容是关于
dataframe
dataframe
和tibble
之间的关系
学习内容
dataframe的具体使用
#数据框
get1<-data.frame(
Person=c("lyl","zyl","ly"),
Age=c(18,19,19),
Weighted=c(50,80,60),
Height=c(158, 180, 165),
Salary=c(8000,4000,5000),
Sex=as.factor(c("female","male","male"))
)
get1
str(get1)#string
nrow(get1)#查看行数
ncol(get1)#查看列数
结果运行如下
Person Age Weighted Height Salary Sex
1 lyl 18 50 158 8000 female
2 zyl 19 80 180 4000 male
3 ly 19 60 165 5000 male
> str(get1)#string
'data.frame': 3 obs. of 6 variables:
$ Person : chr "lyl" "zyl" "ly"
$ Age : num 18 19 19
$ Weighted: num 50 80 60
$ Height : num 158 180 165
$ Salary : num 8000 4000 5000
$ Sex : Factor w/ 2 levels "female","male": 1 2 2
> nrow(get1)#查看行数
[1] 3
> ncol(get1)#查看列数
[1] 6
再导入一个数据进行合并操作
get2<-data.frame(
Person=c("czk","xwj","pjj"),
Age=c(18,19,19),
Weighted=c(70,80,60),
Height=c(168, 180, 165),
Salary=c(8000,4000,5000),
Sex=as.factor(c("female","male","male"))
)
get2
#rbind()按行合并
rbind(get1,get2)
运行结果如下:
> #rbind()按行合并
> rbind(get1,get2)
Person Age Weighted Height Salary Sex
1 lyl 18 50 158 8000 female
2 zyl 19 80 180 4000 male
3 ly 19 60 165 5000 male
4 czk 18 70 168 8000 female
5 xwj 19 80 180 4000 male
6 pjj 19 60 165 5000 male
注
如果复制了我的代码去运行,发现运行不了,各位可以看一下是否是什么包没有进行下载,比如说library(dplyr)
dataframe和 tibble的区别
tibble
是一种数据结构,展示了列数据的维度,比dataframe
更加丰富,现在的数据分析常用tibble
,可以说是dataframe
的加强版
#创建tibble
get3<-tibble(
Person=c("czk","xwj","pjj"),
Age=c(18,19,19),
Weighted=c(70,80,60),
Height=c(168, 180, 165),
Salary=c(8000,4000,5000),
Sex=as.factor(c("female","male","male"))
)
get3
运行结果如下:
# A tibble: 3 × 6
Person Age Weighted Height Salary Sex
<chr> <dbl> <dbl> <dbl> <dbl> <fct>
1 czk 18 70 168 8000 female
2 xwj 19 80 180 4000 male
3 pjj 19 60 165 5000 male
小结
主要学习了dataframe
的使用以及一些简单的数据处理的函数,还有就是了解到tibble
和dataframe
之间的关系