Bottleneck层模型介绍



瓶颈设计的思想是引入一个瓶颈层,它由一系列不同大小的滤波器组成,通常是1x1、3x3和1x1的卷积层序列:

第一个1x1卷积层:用于减少通道数,即降维,从而降低计算复杂度。
3x3卷积层:用于提取空间特征,是瓶颈块中的核心部分,用于提取图像中的细节信息。
第二个1x1卷积层:用于恢复通道数,即升维,以便与输入进行相加。


对于无瓶颈层,第一个3*3卷积层应该是进行特征提取(通道数变多)、空间信息融合及压缩(卷积操作配合步幅),第二个3*3卷积层应该是进一步空间信息融合

对于瓶颈层,第一个1*1卷积层是通道信息融合,减少通道数量,第二个3*3卷积层是进行空间信息融合及压缩,第三个1*1卷积层是进行特征提取(通道数变多)
所以两种层实现的功能都差不多,但是瓶颈层所需要计算量少一些
### YOLOv8 Neck 的功能与实现 #### 功能描述 Neck位于YOLOv8中的主干网络(Backbone)和头部(Head)之间,主要负责特征融合和增强。该部分的设计旨在提升不同尺度下的特征表达能力,从而改善模型的整体性能[^1]。 具体来说,在目标检测任务中,Neck模块能够有效地聚合来自多个次的信息,使得浅的细节信息可以更好地指导深的学习过程;同时也能让高语义信息反向传递给底,帮助捕捉更丰富的上下文关系。这种双向交互有助于解决多尺度物体识别难题,并提高了对复杂场景下小目标检测的效果。 为了应对对象遮挡等问题,可以在训练阶段引入随机擦除(random erase)、CutOut等技术模拟实际应用场景中的障碍物情况,进而强化模型鲁棒性[^2]。 #### 实现方式 在YOLOv8架构里,常用的Neck组件包括但不限于FPN (Feature Pyramid Network),PANet (Path Aggregation Network)等形式。其中: - **FPN**:自顶向下构建特征金字塔,通过上采样操作将高次特征图逐步放大并与低级特征相加连接; - **PANet**:不仅继承了FPN的思想,还增加了横向路径加强信息流动效率,进一步提升了跨尺度关联度。 以下是采用Python编写的简化版PANet代码片段作为示例展示: ```python import torch.nn as nn class PANet(nn.Module): def __init__(self, in_channels_list, out_channel=256): super(PANet, self).__init__() # Top-down layers self.lat_layers = nn.ModuleList([nn.Conv2d(c, out_channel, kernel_size=1) for c in reversed(in_channels_list)]) self.top_down_blocks = nn.ModuleList([nn.Sequential( nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1), nn.ReLU(inplace=True))]*len(in_channels_list)) # Bottom-up path augmentation self.bottom_up_convs = nn.ModuleList([ nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=2, padding=1)]*(len(in_channels_list)-1)) def forward(self, inputs): # 输入为backbone输出的不同level feature maps lat_features = [] last_inner = getattr(inputs[-1], 'clone', lambda: None)() for i in range(len(inputs)): lat_features.append(self.lat_layers[i](inputs[::-1][i])) outs = [lat_features[0]] for idx in range(1, len(lat_features)): prev_shape = lat_features[idx].shape[2:] top_add_lat = F.interpolate(last_inner, size=prev_shape)+lat_features[idx] outs.insert(0, self.top_down_blocks[idx-1](top_add_lat)) last_inner = outs[0] results = [outs[0]] for ltr in range(1, len(outs)): results.append(self.bottom_up_convs[ltr-1](outs[ltr])) return tuple(results) ``` 此段代码定义了一个简单的PANet类,它接收由主干网提取到的一系列特征映射作为输入参数`inputs`,并通过一系列卷积运算完成特征融合处理后返回增强后的特征表示形式供后续头部分支使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值