深度学习笔记
文章平均质量分 66
论文,深度学习笔记
Camellia_49
这个作者很懒,什么都没留下…
展开
-
图像分类的细分任务
图像分类根据标签的不同,大致可分为二分类任务、多分类任务、多标签分类任务。二分类数据集有两个类别,每张图片是两个类别中的一个,标签为0或1。比如,训练一个图像分类器,判断一张输入图片是否为鸟。二分类的损失函数的计算方式如公式1所示,其中hθ(x)h_\theta(x)hθ(x)是sigmoid激活函数。激活函数是将数值变换到(0,1)之间,图展示了sigmoid函数,是递增的函数,当x等于0的时候,sigmoid函数的值为0.5,,随着x的增大,函数趋近1,随着x的减小,函数趋近0L(θ\thet原创 2022-05-09 10:53:21 · 1182 阅读 · 0 评论 -
RCNN、Fast RCNN和Faster RCNN、RPN流程
RCNN流程:输入图像利用selective search对图像生成1K~2K的候选区域(region proposal)这个量比传统的算法要少得多。具体一点,选出regionproposal的方法是运行图像分割算法,对于分割算法跑出来的块,把它作为可能的region proposal输出对每个候选区域,使用深度网络提取特征将region proposal resize为统一大小,送进去掉了softmax的CNN,对每个候region proposal提取特征4.将特征送入每原创 2022-04-28 11:19:22 · 634 阅读 · 0 评论 -
一范数L1和二范数L2
范数是具有“长度”概念的函数。在向量空间内,为所有的向量的赋予非零的增长度或者大小。不同的范数,所求的向量的长度或者大小是不同的。举个例子,2维空间中,向量(3,4)的长度是5,那么5就是这个向量的一个范数的值,更确切的说,是欧式范数或者L2范数的值。范数就是为了方便度量而定义出的一个概念,主要就是面对复杂空间和多维数组时,选取出一个统一的量化标准,以方便度量和比较。请务必记住,范数是人为定义的一种度量方法。对于p-范数,如果x=[x1x_1x1,x2x_2x2,…,xnx_nxn]^T那么原创 2022-04-28 09:57:08 · 3678 阅读 · 0 评论 -
神经网络图像输入零均值化
首先介绍一下归一化(Normalization)、标准化(Standardization)以及零均值化(zero-mean)分别的公式和概念。归一化的公式为:x∗x^*x∗=x−xminxmax−xmin\frac{x-x_{min}}{x_{max}-x_{min}}xmax−xminx−xmin其中:x为某个特征的原始值xminx_{min}xmin 为该特征在所有样本中的最小值xmaxx_{max}xmax为该特征在所有样本中的最大值,x∗x^*x∗为经过归一化处理后的原创 2022-04-27 15:52:20 · 460 阅读 · 0 评论 -
图像三通道和单通道的解释
(一):单通道图,俗称灰度图,每个像素点只能有有一个值表示颜色,它的像素值在0到255之间,0是黑色,255是白色,中间值是一些不同等级的灰色。(也有3通道的灰度图,3通道灰度图只有一个通道有值,其他两个通道的值都是零)。(二):三通道图,每个像素点都有3个值表示 ,所以就是3通道。也有4通道的图。例如RGB图片即为三通道图片,RGB色彩模式是工业界的一种颜色标准,是通过对红( R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红、绿、蓝三个通道的颜色原创 2022-04-27 10:47:31 · 4563 阅读 · 1 评论 -
可变自动编码器(VAE)
参考1生成建模最常用的两种方法是生成对抗网络(GAN)和可变自编码器(VAE)自动编码器(Auto Encoder)是一种自监督的神经网络,它学习如何将输入编码为更低的维数,然后再次解码和重构数据以尽可能有效地接近输入。Autoencoder由3个部分组成:编码器,将输入数据编码为较低维表示的层。压缩层,包含编码/压缩表示的最低维数的层。也被称为瓶颈。译码器,学会解码或重新构造编码表示到数据的层接近输入数据。自动编码器功能:去噪:为了使自动编码器学会去噪图像,我们使用一个损坏或有噪声的图像原创 2022-04-24 09:39:09 · 2141 阅读 · 0 评论 -
深度学习入门-mini-batch学习
深度学习属于端到端的学习,从原始数据(输入)中获得目标结果(输出)的意思。神经网络的优点是对所有的问题都可以用同样的流程来解决。比如,不管要求解的问题是识别5,还是识别狗,抑或是识别人脸,神经网络都是通过不断地学习所提供的数据,尝试发现待求解的问题的模式。也就是说,与待处理的问题无关,神经网络可以将数据直接作为原始数据,进行“端对端”的学习。神经网络的学习所用指标是损失函数。两种常用的损失函数:均方误差:y是神经网络输出,t是监督数据import numpy as npdef mea.原创 2022-04-20 14:31:09 · 5803 阅读 · 0 评论