论文
文章平均质量分 73
论文笔记
Camellia_49
这个作者很懒,什么都没留下…
展开
-
(EWC)Overcoming Catastrophic Forgetting in Neural Network
EWC这个算法降低重要权重的学习率,重要权重的决定权是以前任务中的重要性。原创 2022-06-06 22:23:44 · 3722 阅读 · 5 评论 -
FCOS不完全指南(三)、项目安装与运行
安装FCOS编译时python setup.py build develop --no-deps出错解决方法参考https://zhuanlan.zhihu.com/p/386507444原创 2022-03-30 19:32:25 · 1124 阅读 · 0 评论 -
FCOS Training
python -m torch.distributed.launch \--nproc_per_node=1 \--master_port=$((RANDOM + 10000)) \/home/hy/Github/FCOS-master/tools/train_net.py \--config-file /home/hy/Github/FCOS-master/configs/fcos/fcos_imprv_R_50_FPN_1x.yaml \DATALOADER.NUM_WORKERS 2原创 2022-04-01 13:43:27 · 447 阅读 · 0 评论 -
Faster ILOD:Incremental Learning for Object Detectors based on Faster RCNN
Abstract目的:利用知识蒸馏技术设计一种高效的端到端增量目标检测器工作:评估和分析了基于RPN(区域建议网络)的检测器在增量检测任务中的性能。引入多网络自适应蒸馏,在为新任务微调模型时适当保留旧类别的知识。在基准数据集PASCAL VOC和COCO上的实验表明,基于Faster RCNN的增量检测器的精度更高,比基线检测器快13倍。一、Introduction最先进的目标检测器的表现与人类视觉系统之间的差距仍然很大,主要问题在于会导致灾难性遗忘。为了弥补灾难性遗忘和正常完整数据集训练原创 2022-05-07 15:23:34 · 521 阅读 · 0 评论 -
脑启发重放,利用人工神经网络进行持续学习
Task IL中,一个agent必须增量学习执行多个不同的任务。在 MNIST数据集上,强调了回放的惊人效率和鲁棒性:仅回放少量或低质量的样本就足够了。然而,我们发现将GR扩展到更复杂的问题并不简单。为了解决这个问题,我们提出了一种新的GR变体,其中内部或隐藏的表示被重放,这些表示是由网络自身的上下文调制反馈连接生成的。Results我们重点研究了基于图像分类的持续学习问题。我们遵循 Shin等人20^{20}20提出的一般框架:除了解决任务的主要模型(即分类器),还训练了一个单独的生成模型来生成原创 2022-05-10 11:20:28 · 1403 阅读 · 0 评论