pytorch的cuda版本依据nvcc --version与nvidia-smi

在安装 PyTorch 时,CUDA 版本的选择需要关注 ​​三个关键点​​,它们的优先级如下:

​​1. nvcc --version(编译时 CUDA 版本)​​
​​作用​​:显示当前安装的 CUDA Toolkit 版本(即编译器 nvcc 的版本)。
​​命令​​:
nvcc --version
​​示例输出​​:
nvcc: NVIDIA ® Cuda compiler version 11.7.99
​​意义​​:
这是 PyTorch ​​实际编译时使用的 CUDA 版本​​。如果 PyTorch 是用 CUDA 11.7 编译的(如你指定的 pytorch-cuda=11.7),则必须保证 nvcc 版本 ≥ 11.7,否则可能无法运行。

​​2. nvidia-smi(驱动支持的 CUDA 版本)​​
​​作用​​:显示 NVIDIA 驱动支持的 ​​最高 CUDA 版本​​(即驱动兼容性)。
​​命令​​:
nvidia-smi
​​示例输出​​:
CUDA Version: 12.1
​​意义​​:
这是驱动支持的 ​​最大 CUDA 版本​​,但 PyTorch 实际使用的 CUDA 版本由 nvcc 和 PyTorch 自身决定。如果 nvidia-smi 显示的版本 ≥ PyTorch 需要的版本(如 11.7),则兼容。
​​3. PyTorch 的 CUDA 版本(torch.version.cuda)​​
​​最终决定因素​​:PyTorch 预编译包内置的 CUDA 版本。
​​检查命令​​:
import torch
print(torch.version.cuda) # 输出 PyTorch 实际使用的 CUDA 版本
​​示例输出​​:
11.7
关键点​​:
即使 nvcc 和 nvidia-smi 显示更高版本,PyTorch 仍会使用它编译时的 CUDA 版本(如 11.7)。只要驱动兼容(nvidia-smi 版本 ≥ 11.7),即可正常运行。

总结 pytorch的cuda版本不能超过nvcc --version显示的版本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Raina Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值