著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定 N=5, 排列是1、3、2、4、5。则:
- 1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
- 尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
- 尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
- 类似原因,4 和 5 都可能是主元。
因此,有 3 个元素可能是主元。
输入格式:
输入在第 1 行中给出一个正整数 N(≤105); 第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 109。
输出格式:
在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
#include<iostream>
#include<algorithm>
using namespace std;
int main(){
int n;
cin >> n;
int a[n], b[n], c[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
b[i] = a[i];
}
sort(a, a + n);
int max = 0, index = 0;
for (int i = 0; i < n; i++) {
if (a[i] == b[i] && b[i] > max)
c[index++] = a[i];
if (b[i] > max)
max = b[i];
}
cout << index << endl;
for (int i = 0; i < index; i++) {
cout << c[i];
if (i < index - 1)
cout << " ";
}
cout << endl;
return 0;
}
本题思路:将原数组拷贝到另外一个数组,将原数组排序与拷贝后的数组进行比较,如果对应位置元素相等且该位置大于前面的任意元素即为主元(如果只确定对应位置相等的话不够)。注意题目无论有没有主元都必须输出两行。