“A推出B”="如果A成立,那么B成立"=“A是B的充分条件”=“B是A的必要条件”;
“如果A不成立,那么B不成立”=(逆否命题)“如果B成立,那么A成立”=“A是B的必要条件”
=“B是A的充分条件”。
充分的解释:
“充分”的含义是,一个命题A的成立足够保证另一个命题B的成立——如果我们知道A成立,那么我们可以充分的认为B成立。
必要的解释:
“必要”的意思是,要使得某个命题B成立,我们必须要有命题A的成立(因为A是B的推论,A的不成立将会否定B,所以把A称为B的必要条件)。
“A推出B”="如果A成立,那么B成立"=“A是B的充分条件”=“B是A的必要条件”;
“如果A不成立,那么B不成立”=(逆否命题)“如果B成立,那么A成立”=“A是B的必要条件”
=“B是A的充分条件”。
充分的解释:
“充分”的含义是,一个命题A的成立足够保证另一个命题B的成立——如果我们知道A成立,那么我们可以充分的认为B成立。
必要的解释:
“必要”的意思是,要使得某个命题B成立,我们必须要有命题A的成立(因为A是B的推论,A的不成立将会否定B,所以把A称为B的必要条件)。