李永乐数学基础过关660题高等数学选择题

目录

130. I = lim ⁡ x → 0 cos ⁡ ( x e x ) − e − x 2 2 e 2 x x 4 = I=\lim\limits_{x\to0}\cfrac{\cos(xe^x)-e^{-\frac{x^2}{2}e^{2x}}}{x^4}= I=x0limx4cos(xex)e2x2e2x=
( A ) 0 , (A)0, (A)0,
( B ) − 1 6 , (B)-\cfrac{1}{6}, (B)61,
( C ) − 1 8 , (C)-\cfrac{1}{8}, (C)81,
( D ) − 1 12 . (D)-\cfrac{1}{12}. (D)121.


I = lim ⁡ x → 0 cos ⁡ ( x e x ) − e − x 2 2 e 2 x ( x e x ) 4 ⋅ e 4 x = t = x e x lim ⁡ t → 0 cos ⁡ ( t ) − e − 1 2 t 2 t 4 ⋅ lim ⁡ x → 0 e 4 x = lim ⁡ t → 0 cos ⁡ t − e − 1 2 t 2 t 4 = lim ⁡ t → 0 − sin ⁡ t + t e − 1 2 t 2 4 t 3 = lim ⁡ t → 0 − cos ⁡ t + e − 1 2 t 2 − t 2 e − 1 2 t 2 12 t 2 = lim ⁡ t → 0 1 − cos ⁡ t 12 t 2 + lim ⁡ t → 0 e − 1 2 t 2 − 1 12 t 2 = − 1 12 . \begin{aligned} I&=\lim\limits_{x\to0}\cfrac{\cos(xe^x)-e^{-\frac{x^2}{2}e^{2x}}}{(xe^x)^4}\cdot e^{4x}\\ &\xlongequal{t=xe^x}\lim\limits_{t\to0}\cfrac{\cos(t)-e^{-\frac{1}{2}t^2}}{t^4}\cdot\lim\limits_{x\to0}e^{4x}\\ &=\lim\limits_{t\to0}\cfrac{\cos t-e^{-\frac{1}{2}t^2}}{t^4}\\ &=\lim\limits_{t\to0}\cfrac{-\sin t+te^{-\frac{1}{2}t^2}}{4t^3}\\ &=\lim\limits_{t\to0}\cfrac{-\cos t+e^{-\frac{1}{2}t^2}-t^2e^{-\frac{1}{2}t^2}}{12t^2}\\ &=\lim\limits_{t\to0}\cfrac{1-\cos t}{12t^2}+\lim\limits_{t\to0}\cfrac{e^{-\frac{1}{2}t^2}-1}{12t^2}\\ &=-\cfrac{1}{12}. \end{aligned} I=x0lim(xex)4cos(xex)e2x2e2xe4xt=xex t0limt4cos(t)e21t2x0lime4x=t0limt4coste21t2=t0lim4t3sint+te21t2=t0lim12t2cost+e21t2t2e21t2=t0lim12t21cost+t0lim12t2e21t21=121.
这道题主要利用了换元法求解

132. lim ⁡ x → 0 cos ⁡ ( sin ⁡ x ) − cos ⁡ x ( 1 − cos ⁡ x ) sin ⁡ 2 x = \lim\limits_{x\to0}\cfrac{\cos(\sin x)-\cos x}{(1-\cos x)\sin^2x}= x0lim(1cosx)sin2xcos(sinx)cosx=
( A ) 1 , (A)1, (A)1,
( B ) 1 2 , (B)\cfrac{1}{2}, (B)21,
( C ) 1 3 , (C)\cfrac{1}{3}, (C)31,
( D ) 0. (D)0. (D)0.


lim ⁡ x → 0 cos ⁡ ( sin ⁡ x ) − cos ⁡ x ( 1 − cos ⁡ x ) sin ⁡ 2 x = 2 lim ⁡ x → 0 cos ⁡ ( sin ⁡ x ) − cos ⁡ x x 4 . \lim\limits_{x\to0}\cfrac{\cos(\sin x)-\cos x}{(1-\cos x)\sin^2x}=2\lim\limits_{x\to0}\cfrac{\cos(\sin x)-\cos x}{x^4}. x0lim(1cosx)sin2xcos(sinx)cosx=2x0limx4cos(sinx)cosx.
  由三角公式可知, cos ⁡ ( sin ⁡ x ) − cos ⁡ x = 2 sin ⁡ x + sin ⁡ x 2 sin ⁡ x − sin ⁡ x 2 \cos(\sin x)-\cos x=2\sin\cfrac{x+\sin x}{2}\sin\cfrac{x-\sin x}{2} cos(sinx)cosx=2sin2x+sinxsin2xsinx,所以当 x → 0 x\to0 x0时, cos ⁡ ( sin ⁡ x ) − cos ⁡ x ∼ 1 2 ( x + sin ⁡ x ) ( x − sin ⁡ x ) \cos(\sin x)-\cos x\sim\cfrac{1}{2}(x+\sin x)(x-\sin x) cos(sinx)cosx21(x+sinx)(xsinx)
lim ⁡ x → 0 cos ⁡ ( sin ⁡ x ) − cos ⁡ x ( 1 − cos ⁡ x ) sin ⁡ 2 x = lim ⁡ x → 0 ( x + sin ⁡ x ) ( x − sin ⁡ x ) 2 x 4 = 2 lim ⁡ x → 0 x − sin ⁡ x x 3 = 2 3 lim ⁡ x → 0 1 − cos ⁡ x x 2 = 1 3 . \begin{aligned} \lim\limits_{x\to0}\cfrac{\cos(\sin x)-\cos x}{(1-\cos x)\sin^2x}&=\lim\limits_{x\to0}\cfrac{(x+\sin x)(x-\sin x)}{2x^4}=2\lim\limits_{x\to0}\cfrac{x-\sin x}{x^3}\\ &=\cfrac{2}{3}\lim\limits_{x\to0}\cfrac{1-\cos x}{x^2}=\cfrac{1}{3}. \end{aligned} x0lim(1cosx)sin2xcos(sinx)cosx=x0lim2x4(x+sinx)(xsinx)=2x0limx3xsinx=32x0limx21cosx=31.
这道题主要利用了等价无穷小代换求解

180.下列函数在指定区间上不存在定积分的是
( A ) f ( x ) = { sin ⁡ 1 x , x ≠ 0 , 1 , x = 0 , x ∈ [ − 1 , 1 ] . (A)f(x)=\begin{cases}\sin\cfrac{1}{x},&x\ne0,\\1,&x=0,\end{cases}x\in[-1,1]. (A)f(x)=sinx1,1,x=0,x=0,x[1,1].
( B ) f ( x ) = s g n x = { 1 , x > 0 , 0 , x = 0 , − 1 , x < 0 , x ∈ [ a , b ] . (B)f(x)=\mathrm{sgn}x=\begin{cases}1,&x>0,\\0,&x=0,\\-1,&x<0,\end{cases}x\in[a,b]. (B)f(x)=sgnx=1,0,1,x>0,x=0,x<0,x[a,b].
( C ) f ( x ) = { tan ⁡ x , x ∈ ( − π 2 , π 2 ) , 0 , x = ± π 2 , x ∈ [ − π 2 , π 2 ] . (C)f(x)=\begin{cases}\tan x,&x\in(-\cfrac{\pi}{2},\cfrac{\pi}{2}),\\0,&x=\pm\cfrac{\pi}{2},\end{cases}x\in[-\cfrac{\pi}{2},\cfrac{\pi}{2}]. (C)f(x)=tanx,0,x(2π,2π),x=±2π,x[2π,2π].
( D ) f ( x ) = { sin ⁡ x x , x ≠ 0 1 , x = 0 , x ∈ [ − 1 , 1 ] . (D)f(x)=\begin{cases}\cfrac{\sin x}{x},&x\ne0\\1,&x=0,\end{cases}x\in[-1,1]. (D)f(x)=xsinx,1,x=0x=0,x[1,1].

   f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]可积的充分条件是: f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]内有界,至多有有限个间断点。故选 ( C ) (C) (C)。(这道题主要利用了可积的充分条件求解

219.设 f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x)为二阶常系数线性微分方程 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y+py+qy=0的两个特解, C 1 , C 2 C_1,C_2 C1,C2是两个任意常数,则 C 1 f 1 ( x ) + C 2 f 2 ( x ) C_1f_1(x)+C_2f_2(x) C1f1(x)+C2f2(x)是该方程通解的充分条件是
( A ) f 1 ( x ) f 2 ′ ( x ) − f 2 ( x ) f 1 ′ ( x ) = 0 , (A)f_1(x)f'_2(x)-f_2(x)f'_1(x)=0, (A)f1(x)f2(x)f2(x)f1(x)=0,
( B ) f 1 ( x ) f 2 ′ ( x ) + f 2 ( x ) f 1 ′ ( x ) = 0 , (B)f_1(x)f'_2(x)+f_2(x)f'_1(x)=0, (B)f1(x)f2(x)+f2(x)f1(x)=0,
( C ) f 1 ( x ) f 2 ′ ( x ) + f 2 ( x ) f 1 ′ ( x ) = 0 , (C)f_1(x)f'_2(x)+f_2(x)f'_1(x)=0, (C)f1(x)f2(x)+f2(x)f1(x)=0,
( D ) f 1 ( x ) f 2 ′ ( x ) − f 2 ( x ) f 1 ′ ( x ) = 0 , (D)f_1(x)f'_2(x)-f_2(x)f'_1(x)=0, (D)f1(x)f2(x)f2(x)f1(x)=0,

  由线性微分方程解的结构知 f 1 ( x ) f_1(x) f1(x) f 2 ( x ) f_2(x) f2(x)线性无关是 C 1 f 1 ( x ) + C 2 f 2 ( x ) C_1f_1(x)+C_2f_2(x) C1f1(x)+C2f2(x)为方程通解的充分必要条件,即 f 1 ( x ) f 2 ( x ) ≠ C \cfrac{f_1(x)}{f_2(x)}\ne C f2(x)f1(x)=C,从而 ( f 1 ( x ) f 2 ( x ) ) ′ = f 2 ( x ) f 1 ′ ( x ) − f 1 ( x ) f 2 ′ ( x ) f 2 2 ( x ) \left(\cfrac{f_1(x)}{f_2(x)}\right)'=\cfrac{f_2(x)f'_1(x)-f_1(x)f'_2(x)}{f^2_2(x)} (f2(x)f1(x))=f22(x)f2(x)f1(x)f1(x)f2(x),故应选 ( D ) (D) (D)。(这道题主要利用了构造函数求解

227.设 k k k为常数,则极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x y 2 sin ⁡ k y x 2 + y 4 \lim\limits_{(x,y)\to(0,0)}\cfrac{xy^2\sin ky}{x^2+y^4} (x,y)(0,0)limx2+y4xy2sinky
( A ) (A) (A)等于 0 0 0
( B ) (B) (B)等于 1 2 \cfrac{1}{2} 21
( C ) (C) (C)不存在;
( D ) (D) (D)存在与否与取值有关。


0 ⩽ ∣ x y 2 sin ⁡ k y x 2 + y 4 ∣ ⩽ 1 2 ( x 2 + y 4 ) x 2 + y 4 ∣ sin ⁡ k y ∣ = 1 2 ∣ sin ⁡ k y ∣ → 0 ( 当 ( x , y ) → ( 0 , 0 ) 时 ) \begin{aligned} 0&\leqslant\left|\cfrac{xy^2\sin ky}{x^2+y^4}\right|\leqslant\cfrac{\cfrac{1}{2}(x^2+y^4)}{x^2+y^4}|\sin ky|\\ &=\cfrac{1}{2}|\sin ky|\to0(\text{当}(x,y)\to(0,0)\text{时}) \end{aligned} 0x2+y4xy2sinkyx2+y421(x2+y4)sinky=21sinky0((x,y)(0,0))
这道题主要利用了放缩法求解

233.设 f ( x , y ) = { x y sin ⁡ 1 x 2 + y 2 , x 2 + y 2 ≠ 0 0 x 2 + y 2 = 0 f(x,y)=\begin{cases}xy\sin\cfrac{1}{\sqrt{x^2+y^2}},&x^2+y^2\ne0\\0&x^2+y^2=0\end{cases} f(x,y)=xysinx2+y2 1,0x2+y2=0x2+y2=0,则 f ( x , y ) f(x,y) f(x,y)在点 ( 0 , 0 ) (0,0) (0,0)
( A ) (A) (A)不连续;
( B ) (B) (B)连续,但偏导数 f x ′ ( 0 , 0 ) f'_x(0,0) fx(0,0) f y ′ ( 0 , 0 ) f'_y(0,0) fy(0,0)不存在;
( C ) (C) (C)连续且偏导数 f x ′ ( 0 , 0 ) f'_x(0,0) fx(0,0) f y ′ ( 0 , 0 ) f'_y(0,0) fy(0,0)都存在,但不可微;
( D ) (D) (D)全微分存在但一阶偏导数 f x ′ f'_x fx f y ′ f'_y fy不连续


f ( 0 + Δ x , 0 + Δ y ) − f ( 0 , 0 ) = Δ x Δ y sin ⁡ 1 Δ x 2 + Δ y 2 = ρ ⋅ ρ Δ x ρ Δ y ρ sin ⁡ 1 ρ = ο ( ρ ) ( ρ = Δ x 2 + Δ y 2 → 0 ) . f(0+\Delta x,0+\Delta y)-f(0,0)=\Delta x\Delta y\sin\cfrac{1}{\sqrt{\Delta x^2+\Delta y^2}}\\ =\rho\cdot\rho\cfrac{\Delta x}{\rho}\cfrac{\Delta y}{\rho}\sin\cfrac{1}{\rho}=\omicron(\rho)(\rho=\sqrt{\Delta x^2+\Delta y^2}\to0). f(0+Δx,0+Δy)f(0,0)=ΔxΔysinΔx2+Δy2 1=ρρρΔxρΔysinρ1=ο(ρ)(ρ=Δx2+Δy2 0).
  其中 ∣ Δ x ρ Δ y ρ sin ⁡ 1 ρ ∣ ⩽ 1 \left|\cfrac{\Delta x}{\rho}\cfrac{\Delta y}{\rho}\sin\cfrac{1}{\rho}\right|\leqslant1 ρΔxρΔysinρ11,所以 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)可微。
  当 x 2 + y 2 ≠ 0 x^2+y^2\ne0 x2+y2=0时,
f x ′ ( x , y ) = y sin ⁡ 1 x 2 + y 2 − y x 2 ( x 2 + y 2 ) 3 2 cos ⁡ 1 x 2 + y 2 , f y ′ ( x , y ) = x sin ⁡ 1 x 2 + y 2 − x y 2 ( x 2 + y 2 ) 3 2 cos ⁡ 1 x 2 + y 2 . f'_x(x,y)=y\sin\cfrac{1}{\sqrt{x^2+y^2}}-\cfrac{yx^2}{(x^2+y^2)^{\frac{3}{2}}}\cos\cfrac{1}{\sqrt{x^2+y^2}},\\ f'_y(x,y)=x\sin\cfrac{1}{\sqrt{x^2+y^2}}-\cfrac{xy^2}{(x^2+y^2)^{\frac{3}{2}}}\cos\cfrac{1}{\sqrt{x^2+y^2}}. fx(x,y)=ysinx2+y2 1(x2+y2)23yx2cosx2+y2 1,fy(x,y)=xsinx2+y2 1(x2+y2)23xy2cosx2+y2 1.
  当 x 2 + y 2 = 0 x^2+y^2=0 x2+y2=0时, f x ′ ( 0 , 0 ) = 0 , f y ′ ( 0 , 0 ) = 0 f'_x(0,0)=0,f'_y(0,0)=0 fx(0,0)=0,fy(0,0)=0
  当取路径 y = x y=x y=x时, lim ⁡ x → 0 + y = x f x ′ ( x , y ) = lim ⁡ x → 0 + ( x sin ⁡ 1 2 x − 1 2 2 cos ⁡ 1 2 x ) \underset{y=x}{\lim\limits_{x\to0^+}}f'_x(x,y)=\lim\limits_{x\to0^+}\left(x\sin\cfrac{1}{\sqrt{2}x}-\cfrac{1}{2\sqrt{2}}\cos\cfrac{1}{\sqrt{2}x}\right) y=xx0+limfx(x,y)=x0+lim(xsin2 x122 1cos2 x1)不存在,所以不存在,故 f x ′ ( x , y ) f'_x(x,y) fx(x,y) ( 0 , 0 ) (0,0) (0,0)点不连续。同理 f y ′ ( x , y ) f'_y(x,y) fy(x,y) ( 0 , 0 ) (0,0) (0,0)点不连续,应选 ( D ) (D) (D)。(这道题主要利用了代换法求解

245.已知 ( x + a y ) d x + y d y ( x + y ) 2 \cfrac{(x+ay)\mathrm{d}x+y\mathrm{d}y}{(x+y)^2} (x+y)2(x+ay)dx+ydy为某函数的全微分,则 a a a等于
( A ) 2 ; (A)2; (A)2;
( B ) 1 ; (B)1; (B)1;
( C ) 0 ; (C)0; (C)0;
( D ) − 1. (D)-1. (D)1.

  设 u ( x , y ) u(x,y) u(x,y)满足 d u = x + a y ( x + y ) 2 d x + y ( x + y ) 2 d y \mathrm{d}u=\cfrac{x+ay}{(x+y)^2}\mathrm{d}x+\cfrac{y}{(x+y)^2}\mathrm{d}y du=(x+y)2x+aydx+(x+y)2ydy,由可微与可偏导的关系有: ∂ u ∂ x = x + a y ( x + y ) 2 , ∂ u ∂ y = y ( x + y ) 2 \cfrac{\partial u}{\partial x}=\cfrac{x+ay}{(x+y)^2},\cfrac{\partial u}{\partial y}=\cfrac{y}{(x+y)^2} xu=(x+y)2x+ay,yu=(x+y)2y
  分别对 y , x y,x y,x求偏导数有: ∂ 2 u ∂ x ∂ y = ( a − 2 ) x − a y ( x + y ) 3 , ∂ 2 u ∂ y ∂ x = − 2 y ( x + y ) 3 \cfrac{\partial^2u}{\partial x\partial y}=\cfrac{(a-2)x-ay}{(x+y)^3},\cfrac{\partial^2u}{\partial y\partial x}=\cfrac{-2y}{(x+y)^3} xy2u=(x+y)3(a2)xay,yx2u=(x+y)32y。由于 ∂ 2 u ∂ x ∂ y \cfrac{\partial^2u}{\partial x\partial y} xy2u ∂ 2 u ∂ y ∂ x \cfrac{\partial^2u}{\partial y\partial x} yx2u连续,从而 ∂ 2 u ∂ x ∂ y ≡ ∂ 2 u ∂ y ∂ x \cfrac{\partial^2u}{\partial x\partial y}\equiv\cfrac{\partial^2u}{\partial y\partial x} xy2uyx2u,即 ( a − 2 ) x ≡ ( a − 2 ) y (a-2)x\equiv(a-2)y (a2)x(a2)y,所以当 a = 2 a=2 a=2时上式成立,应选 ( A ) (A) (A)。(这道题主要利用了可微条件求解

263.设积分区域 D = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 1 } D=\{(x,y)|0\leqslant x\leqslant1,0\leqslant y\leqslant1\} D={(x,y)0x1,0y1},则二重积分 I = ∬ D d σ ( 1 + x 2 + y 2 ) 3 2 = I=\displaystyle\iint\limits_{D}\cfrac{\mathrm{d}\sigma}{(1+x^2+y^2)^{\frac{3}{2}}}= I=D(1+x2+y2)23dσ=
( A ) π 2 ; (A)\cfrac{\pi}{2}; (A)2π;
( B ) π 3 ; (B)\cfrac{\pi}{3}; (B)3π;
( C ) π 4 ; (C)\cfrac{\pi}{4}; (C)4π;
( D ) π 6 . (D)\cfrac{\pi}{6}. (D)6π.

  在二重积分 I I I中积分区域 D D D被直线 y = x y=x y=x分割成关于 y = x y=x y=x对称的两个部分区域 D 1 = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ x } , D 2 = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , x ⩽ y ⩽ 1 } = { ( x , y ) ∣ 0 ⩽ y ⩽ 1 , 0 ⩽ x ⩽ y } D_1=\{(x,y)|0\leqslant x\leqslant1,0\leqslant y\leqslant x\},D_2=\{(x,y)|0\leqslant x\leqslant1,x\leqslant y\leqslant1\}=\{(x,y)|0\leqslant y\leqslant1,0\leqslant x\leqslant y\} D1={(x,y)0x1,0yx},D2={(x,y)0x1,xy1}={(x,y)0y1,0xy},被积函数 f ( x , y ) f(x,y) f(x,y)关于变量 x , y x,y x,y对称,即 f ( x , y ) = f ( y , x ) f(x,y)=f(y,x) f(x,y)=f(y,x),从而 ∬ D 1 d σ ( 1 + x 2 + y 2 ) 3 2 = ∬ D 2 d σ ( 1 + x 2 + y 2 ) 3 2 \displaystyle\iint\limits_{D_1}\cfrac{\mathrm{d}\sigma}{(1+x^2+y^2)^{\frac{3}{2}}}=\displaystyle\iint\limits_{D_2}\cfrac{\mathrm{d}\sigma}{(1+x^2+y^2)^{\frac{3}{2}}} D1(1+x2+y2)23dσ=D2(1+x2+y2)23dσ,故
I = ∬ D d σ ( 1 + x 2 + y 2 ) 3 2 = 2 ∬ D 1 d σ ( 1 + x 2 + y 2 ) 3 2 . I=\displaystyle\iint\limits_{D}\cfrac{\mathrm{d}\sigma}{(1+x^2+y^2)^{\frac{3}{2}}}=2\displaystyle\iint\limits_{D_1}\cfrac{\mathrm{d}\sigma}{(1+x^2+y^2)^{\frac{3}{2}}}. I=D(1+x2+y2)23dσ=2D1(1+x2+y2)23dσ.
  设 x = r cos ⁡ θ , y = r sin ⁡ θ x=r\cos\theta,y=r\sin\theta x=rcosθ,y=rsinθ,在极坐标系 ( r , θ ) (r,\theta) (r,θ)中可表示成 { ( r , θ ) ∣ 0 ⩽ θ ⩽ π 4 , 0 ⩽ r ⩽ 1 cos ⁡ θ } \{(r,\theta)|0\leqslant\theta\leqslant\cfrac{\pi}{4},0\leqslant r\leqslant\cfrac{1}{\cos\theta}\} {(r,θ)0θ4π,0rcosθ1},所以
I = 2 ∫ 0 π 4 d θ ∫ 0 1 cos ⁡ θ r d r ( 1 + r 2 ) 3 2 = ∫ 0 π 4 d θ ∫ 0 1 cos ⁡ θ d ( 1 + r 2 ) ( 1 + r 2 ) 3 2 = − 2 ∫ 0 π 4 1 1 + r 2 ∣ 0 1 cos ⁡ θ d θ = = 2 ∫ 0 π 4 ( 1 − cos ⁡ θ 1 + cos ⁡ 2 θ ) d θ = π 2 − 2 ∫ 0 π 4 d ( sin ⁡ θ ) 2 − sin ⁡ 2 θ = π 2 − 2 arcsin ⁡ sin ⁡ θ 2 ∣ 0 π 4 = π 2 − 2 arcsin ⁡ 1 2 = π 6 \begin{aligned} I&=2\displaystyle\int^{\frac{\pi}{4}}_0\mathrm{d}\theta\displaystyle\int^{\frac{1}{\cos\theta}}_0\cfrac{r\mathrm{d}r}{(1+r^2)^{\frac{3}{2}}}=\displaystyle\int^{\frac{\pi}{4}}_0\mathrm{d}\theta\displaystyle\int^{\frac{1}{\cos\theta}}_0\cfrac{\mathrm{d}(1+r^2)}{(1+r^2)^{\frac{3}{2}}}\\ &=-2\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{1}{\sqrt{1+r^2}}\biggm\vert^{\frac{1}{\cos\theta}}_0\mathrm{d}\theta==2\displaystyle\int^{\frac{\pi}{4}}_0\left(1-\cfrac{\cos\theta}{\sqrt{1+\cos^2\theta}}\right)\mathrm{d}\theta\\ &=\cfrac{\pi}{2}-2\displaystyle\int^{\frac{\pi}{4}}_0\cfrac{\mathrm{d}(\sin\theta)}{\sqrt{2-\sin^2\theta}}=\cfrac{\pi}{2}-2\arcsin\cfrac{\sin\theta}{\sqrt{2}}\biggm\vert^{\frac{\pi}{4}}_0\\ &=\cfrac{\pi}{2}-2\arcsin\cfrac{1}{2}=\cfrac{\pi}{6} \end{aligned} I=204πdθ0cosθ1(1+r2)23rdr=04πdθ0cosθ1(1+r2)23d(1+r2)=204π1+r2 10cosθ1dθ==204π(11+cos2θ cosθ)dθ=2π204π2sin2θ d(sinθ)=2π2arcsin2 sinθ04π=2π2arcsin21=6π
这道题主要利用了极坐标积分求解

275.设 g ( x ) g(x) g(x)是可微函数 y = f ( x ) y=f(x) y=f(x)的反函数,且 f ( 1 ) = 0 , ∫ 0 1 x f ( x ) d x = 1010 f(1)=0,\displaystyle\int^1_0xf(x)\mathrm{d}x=1010 f(1)=0,01xf(x)dx=1010,则 ∫ 0 1 d x ∫ 0 f ( x ) g ( t ) d t \displaystyle\int^1_0\mathrm{d}x\displaystyle\int^{f(x)}_0g(t)\mathrm{d}t 01dx0f(x)g(t)dt的值为
( A ) 0 ; (A)0; (A)0;
( B ) 2021 ; (B)2021; (B)2021;
( C ) 2020 ; (C)2020; (C)2020;
( D ) 2100. (D)2100. (D)2100.


∫ 0 1 d x ∫ 0 f ( x ) g ( t ) d t = ∫ 0 1 [ ∫ 0 f ( x ) g ( t ) d t ] d x = x ∫ 0 f ( x ) g ( t ) d t ∣ 0 1 − ∫ 0 1 x g [ f ( x ) ] f ′ ( x ) d x = − ∫ 0 1 x 2 f ′ ( x ) d x = − ∫ 0 1 x 2 d f ( x ) = − x 2 f ( x ) ∣ 0 1 + 2 ∫ 0 1 x f ( x ) d x = 2 ∫ 0 1 x f ( x ) d x = 2020. \begin{aligned} \displaystyle\int^1_0\mathrm{d}x\displaystyle\int^{f(x)}_0g(t)\mathrm{d}t&=\displaystyle\int^1_0\left[\displaystyle\int^{f(x)}_0g(t)\mathrm{d}t\right]\mathrm{d}x\\ &=x\displaystyle\int^{f(x)}_0g(t)\mathrm{d}t\biggm\vert^1_0-\displaystyle\int^1_0xg[f(x)]f'(x)\mathrm{d}x\\ &=-\displaystyle\int^1_0x^2f'(x)\mathrm{d}x=-\displaystyle\int^1_0x^2\mathrm{d}f(x)\\ &=-x^2f(x)\biggm\vert^1_0+2\displaystyle\int^1_0xf(x)\mathrm{d}x\\ &=2\displaystyle\int^1_0xf(x)\mathrm{d}x=2020. \end{aligned} 01dx0f(x)g(t)dt=01[0f(x)g(t)dt]dx=x0f(x)g(t)dt0101xg[f(x)]f(x)dx=01x2f(x)dx=01x2df(x)=x2f(x)01+201xf(x)dx=201xf(x)dx=2020.
这道题主要利用了分部积分法求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 李永乐数学二真解析1987-2008pdf是一本数学集,它汇集了从1987年到2008年期间的数学二真,并对这些真进行了详尽的解析。 这本真解析的目的是帮助学生更好地备考数学二,通过对历年真的解析,学生可以了解到真中的型分布、考点重点和解技巧等信息。真解析还给出了每道的详细解答过程和解思路,其中包括了一些常用的求解方法和技巧,使学生能够更加全面地掌握数学二的知识和技能。 通过阅读这本真解析,学生可以逐渐熟悉数学二的考试要求,了解考试的难度和考点分布,培养应对考试的策略和技巧。学生可以结合解析中的详细解答过程,进行反复练习和思考,提高自己的解能力和思维灵活性。 这本真解析还可以帮助学生进行针对性的学习和复习。学生可以根据真解析中的型分布和考点重点,合理安排学习时间和复习重点,有针对性地进行知识巩固和弱点补充。通过多次实践和反复演练,学生可以逐渐提高自己的解速度和准确性,增强解的信心和能力。 总之,李永乐数学二真解析1987-2008pdf是一本非常有价值的数学学习资料,通过阅读和利用其中的解析内容,学生可以更好地备考数学二,提高自己的解能力和应试水平。 ### 回答2: 李永乐数学二真解析1987-2008pdf 是一份包含了1987年至2008年期间的数学二真解析的PDF文件。该文件为数学学习者提供了丰富的数学目和解答,帮助他们更好地理解和掌握数学知识。这份真解析的PDF文件可以帮助学生们对这些年份的数学二真进行系统的学习和复习。 该份真解析的PDF文件是由李永乐老师或相关团队制作的,李永乐老师是一位著名的数学教育专家,他在数学教育领域有着丰富的经验和教学成果。这份真解析的PDF文件的内容可能包括了每年的数学二考试的试和解答,以及相关的解思路和方法。这些解析可以帮助学生们更好地理解每年考试的目,提高他们的解能力。 对于数学学习者来说,这份真解析的PDF文件是宝贵的学习资源。通过仔细研究和分析这些真解析,学生们可以更好地了解数学二考试的出规律和重点考点,为自己的备考做好充分的准备。此外,这份真解析的PDF文件也可以帮助学生们更好地掌握解技巧和方法,提高他们的解速度和准确度。 综上所述,李永乐数学二真解析1987-2008pdf是一份重要的学习资源,对于数学学习者来说具有极大的参考价值。通过仔细研究和应用这份真解析,学生们可以更好地备考数学二考试,提高他们的数学水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值