常数e的证明

不说废话,直接开始证明:

        首先我们定义两个数列: \{X_{n}\}: X_{n}=(1+\frac{1}{n})^{n},  \{Y_{n}\}Y_{n}=(1+\frac{1}{n})^{n+1}

乍一看这两个数列好像区别不大,但其实它俩的单调性完全相反,接下来我们就证明它俩的单调性

       X_{n}=(1+\frac{1}{n})^{n}\ast 1\leq (\frac{n\ast (1+\frac{1}{n})+1}{n+1})^{n+1}=(1+\frac{1}{n+1})^{n+1}=X_{n+1}

这里我们用到了均值不等式:a^{n}\ast b^{m}\leq (\frac{n\ast a+m\ast b}{n+m})^{n+m},公式直接套里面就出来了。

这里显然  \{X_{n}\}是一个递增数列,且当n等于1的时候有最小值2,即:\{X_{n}\}\geq 2

       同理:证明   \{Y_{n}\}  是一个递减数列,首先将数列取倒数:  \frac{1}{Y_{n}}

        即:           \frac{1}{Y_{n}}=(\frac{n}{n+1})^{n+1}\ast 1\leq (\frac{(n+1)\ast \frac{n}{n+1}+1}{n+2})^{n+2}=(\frac{n+1}{n+2})^{n+2}=\frac{1}{Y_{n+1}}

这里依然用到了上述的均值不等式,这里取倒数是为了方便证明,直接证明比较麻烦。

        所以\{Y_{n}\}是递减数列,且n取1时有最大值4。

        继而有:    2=X_{1}< X_{n}< Y_{n}\leq Y_{1}=4

        所以:\{X_{n}\}递增有上界,\{Y_{n}\}递减有下届

        所以:\{X_{n}\},\{Y_{n}\}的极限都存在

       又由Y_{n}=(1+\frac{1}{n})\ast X_{n},所以两个数列的极限相等

定义:\{X_{n}\}的极限为e, 用计算机可算出e=2.71828...

证明来自陈纪修第三版数学分析,有兴趣的伙伴可以去书上看看证明,欧克,就到这里嘞~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦云澜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值