凸问题-非凸问题-非凸模型

  • 凸问题:目标函数(如损失函数)是 “凸函数” 的优化问题,凸函数特征是局部最优解 = 全局最优解,训练更易收敛(类比碗状函数,小球滚动必落底部 );

  • 非凸问题(如深度神经网络)则有大量局部最优,训练难度更高。

  • 非凸模型:深度神经网络(如 Transformer、ResNet )的损失函数是 “非凸” 的,存在大量局部最优(类比山地地形,小球可能卡在山坡凹处,而非全局最低山谷 );研究非凸模型的收敛性,是 FL 落地复杂任务(如大模型训练)的关键。

  • 数据异构性(非 IID,Independent and Identically Distributed ):客户端数据分布不同(如 A 医院数据多是老年病,B 医院多是儿科病 );

  • IID 指数据同分布(理想假设,实际 FL 中难满足 ),

  • 非 IID 会导致 “客户端漂移”(本地训练后参数过度适配本地数据,全局聚合后模型效果差 )。

### 优化与优化的区别 优化和优化的主要区别在于目标函数和约束条件的形式以及求解难度的不同。对于优化问题,如果目标函数是一个函数,并且约束集合是集,则该问题优化问题[^1]。这种情况下,任何局部最优解都是全局最优解,因此可以通过高效的算法找到解决方案。 然而,在优化问题中,目标函数可能不是函数或者约束集合是非的。这意味着可能存在多个局部极小值点,而这些局部最小值不一定等于全局最小值。寻找全局最优解通常更加困难甚至不可能实现,除采用特定的方法或假设来简化问题。 ### 应用场景对比 #### 优化的应用 在许多实际工程和技术领域中广泛存在各种各样的优化模型及其变体形式。例如在线性回归分析里使用的最小二乘法就是一个典型的二次规划例子;而在统计估计方面也有极大似然估计等问题可以用到优化技术解决[^2]。另外像支持向量机(Support Vector Machine, SVM),它通过最大化分类间隔构建超平面来进行数据划分的过程实际上也是一个标准意义上的QP(Quadratic Programming)问题实例之一。 #### 优化的应用 尽管如此,仍有许多重要的现实世界挑战无法被建模成纯粹意义下的结构——比如神经网络训练过程中的权重调整就涉及到复杂的高维空间内的路径探索任务,这往往属于高度线性的范畴因而难以直接套用传统意义上针对低复杂度系统的那些成熟套路去处理它们。此外还有图像恢复、信号重建等领域也经常遇到情况下的参数寻优需求[^3]。 ### 代码示例:简单的优化问题求解 下面展示了一个利用Python库`cvxpy`解决的一个基本优化案例: ```python import cvxpy as cp # 定义变量 x = cp.Variable() # 构造目标函数 (这里选取的是一个简单的抛物线方程作为示范) objective = cp.Minimize((x - 1)**2) # 添加约束条件 constraints = [-0.5 <= x, x <= 2] # 创建并解决问题 prob = cp.Problem(objective, constraints) result = prob.solve() print("Optimal value", result) print("Optimal var", x.value) ``` 此脚本定义了一元一次多项式的平方误差项作为待最小化的目标表达式,并附加了一些边界范围限制之后交给CVXPY框架自动完成后续计算工作直至得出最终结论为止。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值