深度学习P2-实现彩色图片识别

 本文为🔗365天深度学习训练营 中的学习记录博客
 原作者:K同学啊|接辅导、项目定制


我的环境:

1.语言:python3.7

2.编译器:pycharm


一、前期准备

1、设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

2、导入数据

使用datdaset下载CIFA10数据集,并划分好训练集与测试集

使用dataloader加载数据,并设置好基本的batch_size

torchvision.datasets 是 PyTorch 的 torchvision 库中的一个模块,为各种计算机视觉任务提供了预定义的数据集。该模块包含了一些常用的数据集,例如 MNIST、CIFAR-10、CIFAR-100、ImageNet 等。

这些数据集经常被用于训练和评估深度学习模型,用于图像分类、目标检测、语义分割等计算机视觉任务。torchvision.datasets 模块提供了一种方便的方式来加载和预处理这些数据集,避免了需要从头编写大量数据加载和预处理代码的麻烦。

参数说明:

  • root (string) :数据地址 
  • train (string) :True = 训练集,False = 测试集 
  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。 
  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化 
  • target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。 
import torchvision
train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)
 
test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

torch.utils.data.DataLoader 是 PyTorch 框架中的一个实用工具,用于创建数据加载器。数据加载器是一种方便的方式,可以将数据集加载、划分为小批量并进行多线程/多进程处理。

通过 torch.utils.data.DataLoader 可以将自定义的数据集对象或者已有的数据集对象转换成可迭代的数据加载器。它可以按照指定的批次大小(batch size)从数据集中提取样本,并根据设置的参数来实现数据预处理、数据打乱、多线程加载等功能。

数据加载器使得在训练神经网络时更加高效和便捷,无需手动处理数据获取与处理过程,而只需要通过循环迭代数据加载器来获得每个批次的数据。

下面是对torch.utils.data.DataLoader的解释:

  1. from torch.utils.data import DataLoader 导入torch.utils.data.DataLoader类。

  2. dataset 是一个数据集对象,可以是自定义的数据集类,也可以是PyTorch提供的内置数据集类(如torchvision.datasets.ImageFolder)。

  3. batch_size 是每个批次中包含的样本数量。在训练过程中,数据会被拆分成多个批次,每个批次的样本数量为batch_size

  4. shuffle 是一个布尔值,表示是否在每个epoch开始时将数据打乱顺序。如果设置为True,则在每个epoch开始时,DataLoader会随机重新排列数据,以增加训练的随机性。

  5. num_workers 是用于数据加载的子进程数量。通过增加子进程的数量,可以加快数据加载的速度。

  6. 可选参数 pin_memorydrop_lastpin_memory 用于指定是否将数据存储到固定内存中,这可以提高数据加载的效率。drop_last 用于指定当数据总数不能被batch_size整除时,是否舍弃最后一个不完整批次的数据。

  7. 使用 data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) 创建一个数据加载器对象 data_loader,并传入相应的参数。

batch_size = 32
 
train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)
 
test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

3、数据可视化

  squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )。

import numpy as np
 
 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
plt.show()

二、构建CNN网络

  对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

1. torch.nn.Conv2d()详
 
函数原型:
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
 
关键参数说明:
- in_channels ( int ) – 输入图像中的通道数
- out_channels ( int ) – 卷积产生的通道数
- kernel_size ( int or tuple ) – 卷积核的大小
- stride ( int or tuple , optional ) -- 卷积的步幅。默认值:1
- padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
- padding_mode (字符串,可选) – 'zeros', 'reflect', 'replicate'或'circular'. 默认:'zeros'

2. torch.nn.Linear()详解
 
函数原型:
>torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
 
关键参数说明:
 
- in_features:每个输入样本的大小
- out_features:每个输出样本的大小

3. torch.nn.MaxPool2d()详解
 
函数原型:
>torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
 
关键参数说明:
 
- kernel_size:最大的窗口大小
- stride:窗口的步幅,默认值为`kernel_size`
- padding:填充值,默认为0
- dilation:控制窗口中元素步幅的参数

4. 关于卷积层、池化层的计算:

下面的网络数据shape变化过程为:
 
`3, 32, 32`(输入数据) 
-> `64, 30, 30`(经过卷积层1)-> `64, 15, 15`(经过池化层1)
-> `64, 13, 13`(经过卷积层2)-> `64, 6, 6`(经过池化层2)
-> `128, 4, 4`(经过卷积层3) -> `128, 2, 2`(经过池化层3)
-> `512` -> `256` -> `num_classes(10)

import torch.nn.functional as F
 
num_classes = 10  # 图片的类别数
 
class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)
 
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载并打印模型
 

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)
 
summary(model)

 三、模型训练 

 1、设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2、编写训练函数

1. optimizer.zero_grad()
 
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。
 
2. loss.backward()
 
PyTorch的反向传播(即`tensor.backward()`)是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
 
具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用`tensor.backward()`,所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
 
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用`loss.backward()`后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
 
如果没有进行`tensor.backward()`的话,梯度值将会是None,因此`loss.backward()`要写在`optimizer.step()`之前。
 
3. optimizer.step()
 
step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行`optimizer.step()`函数前应先执行`loss.backward()`函数来计算梯度。
 
注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是`tensor.backward()`方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)
 
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches
 
    return train_acc, train_loss

3. 编写测试函数

  测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
 
    test_acc  /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

4、正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
 
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

Epoch: 1, Train_acc:15.2%, Train_loss:2.268, Test_acc:20.7%,Test_loss:2.119

Epoch: 2, Train_acc:25.1%, Train_loss:2.015, Test_acc:28.2%,Test_loss:1.963

Epoch: 3, Train_acc:33.7%, Train_loss:1.806, Test_acc:34.4%,Test_loss:1.812

Epoch: 4, Train_acc:40.8%, Train_loss:1.628, Test_acc:40.6%,Test_loss:1.673

Epoch: 5, Train_acc:44.8%, Train_loss:1.527, Test_acc:46.5%,Test_loss:1.480

Epoch: 6, Train_acc:47.7%, Train_loss:1.442, Test_acc:47.1%,Test_loss:1.458

Epoch: 7, Train_acc:50.8%, Train_loss:1.366, Test_acc:50.9%,Test_loss:1.353

Epoch: 8, Train_acc:53.7%, Train_loss:1.296, Test_acc:53.3%,Test_loss:1.312

Epoch: 9, Train_acc:56.3%, Train_loss:1.232, Test_acc:56.8%,Test_loss:1.212

Epoch:10, Train_acc:58.7%, Train_loss:1.175, Test_acc:58.5%,Test_loss:1.175

Done

 

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值