Linear span

In mathematics, the linear span (also called the linear hull or just span) of a set S S S of vectors (form a vector space), denoted s p a n ( S ) span(S) span(S), is the smallest linear subspace that contains the set. It can be characterized either as the intersection of all linear subspaces that contain S S S, or as the set of linear combinations of elements of S S S. The linear span of a set of vectors is therefore a vector space. Spans can be generalized to matroid and modules.
For expressing that a vector space V V V is a span of a set S S S, one commonly uses the following phrases: S S S spans V V V; S S S generates V V V; V V V is spanned by S S S; V V V is generated by S S S; S S S is a spanning set of V V V; S S S is a generating set of V V V.

1 Definition


Given a vector space V V V over a field K K K, the span of a set S S S of vectors (not necessarily infinite) is defined to be the intersection W W W of all subspaces of V V V that contain S S S. W W W is referred to as the subspace spanned by S S S, or by the vectors in S S S. Conversely, S S S is called a spanning set of W W W, and we say that S S S spans W W W.

Alternatively, the span of S S S may be defined as the set of all finite linear combinations of elements (vectors) of S S S, which follows from the above definition.
span ⁡ ( S ) = { ∑ i = 1 k λ i v i    ∣    k ∈ N , v i ∈ S , λ i ∈ K } . {\displaystyle \operatorname {span} (S)=\left\{{\left.\sum _{i=1}^{k}\lambda _{i}v_{i}\;\right|\;k\in \mathbb {N} ,v_{i}\in S,\lambda _{i}\in K}\right\}.} span(S)={i=1kλivi kN,viS,λiK}.

In the case of infinite S S S, infinite linear combinations (i.e. where a combination may involve an infinite sum, assuming that such sums are defined somehow as in, say, a Banach space are excluded by the definition; a generalization that allows these is not equivalent.

2 Examples


The real vector space R 3 R^3 R3 has { ( − 1 , 0 , 0 ) , ( 0 , 1 , ) , ( 0 , 0 , 1 ) } \{ (-1,0,0), (0,1,), (0,0,1) \} {(1,0,0),(0,1,),(0,0,1)} as a spanning set. This particular spanning set is also a basis. If ( − 1 , 0 , 0 ) (-1, 0, 0) (1,0,0) were replaced by ( 1 , 0 , 0 ) (1,0,0) (1,0,0), it would also form the canonical basis of R 3 R^3 R3.

Another spanning set for the same space if given by
{ ( 1 , 2 , 3 ) , ( 0 , 1 , 2 ) , ( − 1 , 1 ⁄ 2 , 3 ) , ( 1 , 1 , 1 ) } \{ (1, 2, 3), (0, 1, 2), (−1, 1⁄2, 3), (1, 1, 1) \} {(1,2,3),(0,1,2),(1,1⁄2,3),(1,1,1)}
but this set is not a basis, because it is linearly dependent.

The set { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 1 , 1 , 0 ) } \{ (1,0,0), (0,1,0), (1,1,0)\} {(1,0,0),(0,1,0),(1,1,0)} is not spanning set of R R R, since its span is the space of all vectors in R 3 R^3 R3 whose last component is zero. That space is also spanned by the set { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) } \{ (1,0,0), (0,1,0) \} {(1,0,0),(0,1,0)}, as ( 1 , 1 , 0 ) (1,1,0) (1,1,0) is a linear combination of ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) (1,0,0), (0,1,0) (1,0,0),(0,1,0). It does, however, span R 2 R^2 R2. (when interpreted as a subset of R 3 R^3 R3).

The empty set is a spanning set of { ( 0 , 0 , 0 ) } \{ (0,0,0) \} {(0,0,0)}, since the empty set is a subset of all possible vector spaces in R 3 R^3 R3, and { ( 0 , 0 , 0 ) } \{ (0,0,0) \} {(0,0,0)} is the intersection of all of these vector spaces.

The set of functions x n x^n xn where n n n is a non-negative integer spans the space of polynomials.

3 Theorems


Theorem 1

The subspace spanned be a non-empty subset S S S of a vector space V V V is the set of all linear combinations of vectors in S S S.

This theorem is so well known that at times, it is referred to as the definition of span of a set.

Theorem 2

Every spanning set S S S of a vector space V V V must contain at least as many elements as any linearly independent set of vectors from V V V.

Theorem 3

Let V V V be a finite-dimensional vector space. Any set of vectors that spans V V V can be reduced to a basis for V V V, by discarding vectors if necessary (i.e., if there are linearly dependent vectors in the set). If the axiom of choice holds, this is true without the assumption that V V V has finite dimension.

This also indicates that a basis is a minimal spanning set when V V V is finite-dimensional.

4 Generalizations


5 Closed linear span functional analysis)


5.1 Notes


5.2 A useful lemma


6 See also


7 Citations


8 Sources


8.1 Textbook


8.2 Web


9 External links

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值