分析数学中常用的等价定义

集合的线性生成(linear span)

定义一: 设 V 是 k维向量空间,M是V的子集且非空,则M的linear span的显示表达式为
s p a n   M = { ∑ i = 1 r α i v 1 ∣ r ∈ N , α i ∈ k , v i ∈ M , i = 1 , … , r } span\, M= \{\sum_{i=1}^{r} \alpha_i v_1 \vert r \in N, \alpha_i \in k, v_i \in M, i=1,\dots,r \} spanM={i=1rαiv1rN,αik,viM,i=1,,r}
定义二: 设 V 是 k维向量空间,M是V的子集且非空,则M的linear span的定义为
s p a n   M = ∩ M ⊆ U U   i s   a   s u b s p a c e   o f   V U span\, M=\cap_{M \subseteq U \atop U\, is\, a\, subspace\, of\, V} U spanM=UisasubspaceofVMUU
根据定义二可以推出span算子是hull算子,V的所有子空间构成的集合是它的包系统。

集合的闭包(包含集合M的最小闭集)

定义一:在向量空间V中, c l :   2 V → 2 V cl: \, 2^V \to 2^V cl:2V2V定义为
c l   M = ∩ M ⊆ N N ⊂ V 且 为 闭 集 N cl\, M= \cap_{M \subseteq N \atop N \subset V且为闭集} N clM=NVMNN
根据定义一可以推断出闭包算子是包算子。
定义二: 在向量空间V中, c l :   2 V → 2 V cl: \, 2^V \to 2^V cl:2V2V定义为
c l   M = { x ∣ ∀ ε > 0 , B ε ( x ) ∩ M ≠ ∅ } cl\, M=\{ x \vert \forall \varepsilon>0, B_{\varepsilon}(x) \cap M \neq \empty \} clM={xε>0,Bε(x)M=}
定义三: 在向量空间V中, c l   M cl\, M clM等价于集合 M M M的极限点的集合。
c l   M = { x ∣ ∃ { x k } ⊆ M , s . t .   lim ⁡ k → ∞ x k = x } cl \, M=\{ x \vert \exists \{ x_k \} \subseteq M, s.t.\, \lim_{k \to \infty} x^k=x \} clM={x{xk}M,s.t.klimxk=x}
定义四: 在向量空间V中, c l   M cl\, M clM等于
c l M = ∩ ε > 0 ( M + ε B ) cl M=\cap_{\varepsilon >0} (M+\varepsilon B) clM=ε>0(M+εB)

集合(或向量)的仿射包(包含此集合或向量最小的仿射集)

定义一:对于集合 M ⊂ R n M \subset R^n MRn,它的仿射包被定义为
a f f    M = ∩ M ⊂ S S   a f f i n e S aff \;M=\cap_{M \subset S \atop S\, affine} S affM=SaffineMSS
也就是说 aff M是包含M的最小仿射集。
可以证明仿射包是包算子。
定义二:对于非空集合 M ⊂ E M \subset E ME的所有包组合集合记为 A ( M ) A(M) A(M)
A ( M ) = { ∑ i = 1 r α i v i ∣ r ∈ N , v i ∈ M , α i ∈ R , i = 1 … , r , ∑ i = 1 r α i = 1 } A(M)=\{ \sum_{i=1}^{r} \alpha_i v_i \vert r \in N, v_i \in M, \alpha_i \in R, i=1\dots,r, \sum_{i=1}^{r} \alpha_i=1 \} A(M)={i=1rαivirN,viM,αiR,i=1,r,i=1rαi=1}
aff M是M中点的所有包组合,即
a f f    M = A ( M ) aff\; M=A(M) affM=A(M)
定义三:对于 x 0 , x 1 , … , x k ∈ E x_0,x_1,\dots, x_k\in E x0,x1,,xkE,则
a f f { x 0 , x 1 , … , x k } = x 0 + s p a n { x 1 − x 0 , … , x k − x 0 } aff\{ x_0,x_1,\dots,x_k \}=x_0 + span\{ x_1-x_0,\dots,x_k-x_0 \} aff{x0,x1,,xk}=x0+span{x1x0,,xkx0}
如果 { x 0 , … , x k } \{x_0, \dots, x_k\} {x0,,xk}包含0,则
a f f { x 0 , x 1 , … , x k } = s p a n { x 0 , x 1 , … , x k } aff\{ x_0,x_1,\dots,x_k \}=span\{ x_0,x_1,\dots,x_k \} aff{x0,x1,,xk}=span{x0x1,,xk}

仿射独立

定义一:向量 x 0 , … , x k ∈ E x_0,\dots, x_k \in E x0,,xkE是仿射独立的,当且仅当 x 1 − x 0 , … , x k − x 0 x_1-x_0,\dots,x_k-x_0 x1x0,,xkx0是线性独立的。
定义二:向量 x 0 , … , x k ∈ E x_0,\dots, x_k \in E x0,,xkE是仿射独立的,当且仅当 ( x 0 , 1 ) , … , ( x p , 1 ) ∈ E ⊗ R (x_0,1),\dots, (x_p,1)\in E \otimes R (x0,1),,(xp,1)ER是线性独立的。(扩展向量线性独立)
定义三:向量 x 0 , … , x k ∈ E x_0,\dots, x_k \in E x0,,xkE是仿射独立的,当且仅当等式
0 = ∑ i = 0 p α i x i , 0 = ∑ i = 0 p α i 0=\sum_{i=0}^{p} \alpha_i x_i, 0=\sum_{i=0}^{p} \alpha_i 0=i=0pαixi,0=i=0pαi
有唯一解 α 0 = ⋯ = α p = 0 \alpha_0=\dots=\alpha_p=0 α0==αp=0

(仿射)超平面

定义一
H = { x ∈ R n : α T x = r } H=\{ x\in R^n:\alpha ^T x=r \} H={xRn:αTx=r}
满足上式的所有x组成的集合称为 R n R^n Rn中的仿射超平面。 其中 α \alpha α被称为法向量,因为在仿射场面的任意一个向量都垂直于 α \alpha α α T ( x 1 − x 2 ) = 0 \alpha^T(x_1-x_2)=0 αT(x1x2)=0 x 1 , x 2 ∈ H x_1,x_2 \in H x1,x2H
定义二:R 的维数为 1 − n 1-n 1n 的仿射集H 称为 R n R^n Rn中的超平面。
两个定义的等价性证明见组合数学第四章讲义。

凸包

定义一:令 M ∈ E M\in E ME是非空集合。定义 M M M的凸包为
c o n v    M = ∩ M ⊆ C C c o n v e x C conv\; M= \cap_{M \subseteq C\atop C convex} C convM=CconvexMCC
定义二:集合M的凸包等于集合元素的凸组合
c o n v    M = { ∑ i = 1 r λ i x i ∣ r ∈ N , λ i ∈ Δ r , x i ∈ M , i = 1 , … , r } conv\; M=\{ \sum_{i=1}^{r} \lambda_i x_i \vert r \in N, \lambda_i \in \Delta_r, x_i \in M, i=1,\dots,r \} convM={i=1rλixirN,λiΔr,xiM,i=1,,r}
定义三:(Caratheodory’s theorem)令 M ⊆ E M \subseteq E ME非空, N = ∣ E ∣ N=\vert E \vert N=E。则每个M的凸包的元素可以写为M中至多N+1个元素的凸组合。
c o n v    M = { ∑ i = 1 N + 1 λ i x i ∣ λ i ∈ Δ N + 1 , x i ∈ M , i = 1 , … , N + 1 } conv\; M=\{ \sum_{i=1}^{N+1} \lambda_i x_i \vert \lambda_i \in \Delta_{N+1}, x_i \in M, i=1,\dots,N+1 \} convM={i=1N+1λixiλiΔN+1,xiM,i=1,,N+1}

注:E代表任意的欧式空间
Δ r \Delta_r Δr 代表r阶单纯形

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值