Hyperbolic geometry

In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R.
(Compare the above with Playfair’s axiom, the modern version of Euclid’s parallel postulate.)

Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane.

A modern use of hyperbolic geometry is in the theory of special relativity, particularly the Minkowski model.

When geometers first realised they were working with something other than the standard Euclidean geometry, they described their geometry under many different names; Felix Klein finally gave the subject the name hyperbolic geometry to include it in the now rarely used sequence elliptic geometry (spherical geometry), parabolic geometry (Euclidean geometry), and hyperbolic geometry. In the former Soviet Union, it is commonly called Lobachevskian geometry, named after one of its discoverers, the Russian geometer Nikolai Lobachevsky.

This page is mainly about the 2-dimensional (planar) hyperbolic geometry and the differences and similarities between Euclidean and hyperbolic geometry. See hyperbolic space for more information on hyperbolic geometry extended to three and more dimensions.

在这里插入图片描述

Lines through a given point P and asymptotic to line R

1 Properties

1.1 Relation to Euclidean geometry

1.2 Lines

1.2.1 Non-intersecting / parallel lines

1.3 Circles and disks

1.4 Hypercycles and horocycles

1.5 Triangles

1.6 Regular apeirogon

1.7 Tessellations

2 Standardized Gaussian curvature

2.1 Cartesian-like coordinate systems

2.2 Distance

3 History

3.1 19th-century developments

3.2 Philosophical consequences

3.3 Geometry of the universe (spatial dimensions only)

3.4 Geometry of the universe (special relativity)

4 Physical realizations of the hyperbolic plane

5 Models of the hyperbolic plane

5.1 The Beltrami–Klein model

5.2 The Poincaré disk model

5.3 The Poincaré half-plane model

5.4 The hyperboloid model

5.5 The hemisphere model

5.6 The Gans model

5.7 The band model

5.8 Connection between the models

6 Isometries of the hyperbolic plane

7 Hyperbolic geometry in art

8 Higher dimensions

9 Homogeneous structure

10 See also

### Hyperbolic API Documentation and Usage Examples Hyperbolic APIs are designed to work with hyperbolic geometry, which is essential in various applications such as graph embedding, natural language processing, and information retrieval systems. These APIs provide functions that facilitate operations within the hyperbolic space. #### Key Features of Hyperbolic APIs The primary features include methods for converting Euclidean data into hyperbolic representations, calculating distances between points in hyperbolic space, and performing transformations on these points[^1]. ```python import numpy as np from hyperbolic_api import PoincareBall # Initialize a point in the Poincaré ball model point_a = np.array([0.5, 0.2]) poincare_ball = PoincareBall() # Calculate distance from origin distance_from_origin = poincare_ball.distance_to_origin(point_a) print(f"Distance from origin: {distance_from_origin}") ``` This code snippet demonstrates how one can initialize a point using the `PoincareBall` class and calculate its distance from the origin in hyperbolic space. The library used here provides an interface similar to popular machine learning libraries like TensorFlow or PyTorch but specialized for hyperbolic computations. For more advanced functionalities, users may explore additional modules provided by this type of API: - **Embedding**: Tools for mapping high-dimensional vectors into lower dimensional hyperbolic spaces. - **Optimization**: Algorithms tailored specifically towards optimizing objectives defined over hyperbolic manifolds. - **Visualization**: Methods to visualize datasets embedded in two or three dimensions while preserving their intrinsic properties under hyperbolic metrics. --related questions-- 1. What specific tasks benefit most from utilizing hyperbolic embeddings? 2. How does optimization differ when working within hyperbolic versus traditional Euclidean geometries? 3. Can you explain some common challenges encountered during implementation involving hyperbolic models?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值