Associative algebra

In mathematics, an associative algebra A is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

A commutative algebra is an associative algebra that has a commutative multiplication, or, equivalently, an associative algebra that is also a commutative ring.

In this article associative algebras are assumed to have a multiplicative identity, denoted 1; they are sometimes called unital associative algebras for clarification. In some areas of mathematics this assumption is not made, and we will call such structures non-unital associative algebras. We will also assume that all rings are unital, and all ring homomorphisms are unital.

Many authors consider the more general concept of an associative algebra over a commutative ring R, instead of a field: An R-algebra is an R-module with an associative R-bilinear binary operation, which also contains a multiplicative identity. For examples of this concept, if S is any ring with center C, then S is an associative C-algebra.

1 Definition

Let R be a commutative ring (so R could be a field). An associative R-algebra (or more simply, an R-algebra) is a ring that is also an R-module in such a way that the two additions (the ring addition and the module addition) are the same operation, and scalar multiplication satisfies

{\displaystyle r\cdot (xy)=(r\cdot x)y=x(r\cdot y)}r\cdot (xy)=(r\cdot x)y=x(r\cdot y)
for all r in R and x, y in the algebra. (This definition implies that the algebra is unital, since rings are supposed to have a multiplicative identity.)

Equivalently, an associative algebra A is a ring together with a ring homomorphism from R to the center of A. If f is such a homomorphism, the scalar multiplication is {\displaystyle (r,x)\mapsto f®x}{\displaystyle (r,x)\mapsto f®x} (here the multiplication is the ring multiplication); if the scalar multiplication is given, the ring homomorphism is given by {\displaystyle r\mapsto r\cdot 1_{A}}{\displaystyle r\mapsto r\cdot 1_{A}} (See also § From ring homomorphisms below).

Every ring is an associative {\displaystyle \mathbb {Z} }\mathbb {Z} -algebra, where {\displaystyle \mathbb {Z} }\mathbb {Z} denotes the ring of the integers.

A commutative algebra is an associative algebra that is also a commutative ring.

1.1 As a monoid object in the category of modules

1.2 From ring homomorphisms

2 Algebra homomorphisms

3 Examples

3.1 Algebra

3.2 Representation theory

3.3 Analysis

3.4 Geometry and combinatorics

4 Constructions

5 Separable algebra

6 Finite-dimensional algebra

6.1 Commutative case

6.2 Noncommutative case

7 Lattices and orders

8 Related concepts

8.1 Coalgebras

9 Representations

9.1 Motivation for a Hopf algebra

9.2 Motivation for a Lie algebra

10 Non-unital algebras

11 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值