Integration by parts

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation.

The integration by parts formula states:

{\displaystyle {\begin{aligned}\int {a}^{b}u(x)v’(x),dx&={\Big [}u(x)v(x){\Big ]}{a}^{b}-\int _{a}^{b}u’(x)v(x),dx\&=u(b)v(b)-u(a)v(a)-\int _{a}^{b}u’(x)v(x),dx.\end{aligned}}}{\displaystyle {\begin{aligned}\int {a}^{b}u(x)v’(x),dx&={\Big [}u(x)v(x){\Big ]}{a}^{b}-\int _{a}^{b}u’(x)v(x),dx\&=u(b)v(b)-u(a)v(a)-\int _{a}^{b}u’(x)v(x),dx.\end{aligned}}}
Or, letting {\displaystyle u=u(x)}{\displaystyle u=u(x)} and {\displaystyle du=u’(x),dx}{\displaystyle du=u’(x),dx} while {\displaystyle v=v(x)}{\displaystyle v=v(x)} and {\displaystyle dv=v’(x),dx}{\displaystyle dv=v’(x),dx}, the formula can be written more compactly:

{\displaystyle \int u,dv\ =\ uv-\int v,du.}{\displaystyle \int u,dv\ =\ uv-\int v,du.}
Mathematician Brook Taylor discovered integration by parts, first publishing the idea in 1715.[1][2] More general formulations of integration by parts exist for the Riemann–Stieltjes and Lebesgue–Stieltjes integrals. The discrete analogue for sequences is called summation by parts.

Contents
1 Theorem
1.1 Product of two functions
1.2 Validity for less smooth functions
1.3 Product of many functions
2 Visualization
3 Applications
3.1 Finding antiderivatives
3.1.1 Polynomials and trigonometric functions
3.1.2 Exponentials and trigonometric functions
3.1.3 Functions multiplied by unity
3.1.4 LIATE rule
3.2 Wallis product
3.3 Gamma function identity
3.4 Use in harmonic analysis
3.4.1 Fourier transform of derivative
3.4.2 Decay of Fourier transform
3.5 Use in operator theory
3.6 Other applications
4 Repeated integration by parts
4.1 Tabular integration by parts
5 Higher dimensions
5.1 Green’s first identity
6 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值